科目: 来源: 题型:
【题目】如图,已知CE是圆O的直径,点B在圆O上由点E顺时针向点C运动(点B不与点E、C重合),弦BD交CE于点F,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.
(1)若圆O的半径为2,且点D为弧EC的中点时,求圆心O到弦CD的距离;
(2)当DFDB=CD2时,求∠CBD的大小;
(3)若AB=2AE,且CD=12,求△BCD的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线与轴交于A、B两点,与轴交于点C,抛物线的对称轴交轴于点D,已知点A的坐标为(-1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:
(1)图中的值是________;
(2)被查的200名生中最喜欢球运动的学生有________人;
(3)若由3名最喜欢篮球运动的学生(记为),1名最喜欢乒乓球运动的学生(记为),1名最喜欢足球运动的学生(记为)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别是(0,3)、(-4,0).
(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O、B对应点分别是E、F,请在图中面出△AEF;
(2)以点O为位似中心,将三角形AEF作位似变换且缩小为原来的在网格内画出一个符合条件的
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-4,0),对称轴为直线x=-1,下列结论:
①abc>0;
②2a-b=0;
③一元二次方程ax2+bx+c=0的解是x1=-4,x2=1;
④当y>0时,-4<x<2.
其中正确的结论有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,四边形为正方形,点在轴上,点在轴上,且, ,反比例函数在第一象限的图象经过正方形的顶点.
(1)求点的坐标和反比例函数的关系式.
(2)如图2,将正方形沿轴向右平移 个单位长度时,点恰好落在反比例函数的图象.
(3)在(2)的情况下,连接并延长,交反比例函数的图象于点,点是轴上的一个动点(不与点、重合)
①当点的坐标为多少时,四边形是矩形?请说明理由.
②过点作轴于点,请问当点的坐标为多少时,与相似?(直接写出答案).
查看答案和解析>>
科目: 来源: 题型:
【题目】为弘扬中华传统文化,某校举办了学生“国学经典大赛”.比赛项目为:.唐诗、.宋词、.论语、.三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是 ;
(2)小红和小明组成一个小组参加双人组比赛,比赛规则是:同一小组的两名队员的比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则小红和小明都没有抽到“论语”的概率是多少?请用画树状图或列表的方法进行说明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在中,,过点的直线,为边上一点,过点作,交直线于,垂足为,连接、
(1)当在中点时,四边形是什么特殊四边形?说明你的理由;
(2)当为中点时,等于 度时,四边形是正方形.
查看答案和解析>>
科目: 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高度发展.据调查,太原市某家小型“大学生自主创业”的快递公司,今年九月份与十一月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递总件数的月平均增长率;
(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递业务员能否完成今年十二月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com