相关习题
 0  365559  365567  365573  365577  365583  365585  365589  365595  365597  365603  365609  365613  365615  365619  365625  365627  365633  365637  365639  365643  365645  365649  365651  365653  365654  365655  365657  365658  365659  365661  365663  365667  365669  365673  365675  365679  365685  365687  365693  365697  365699  365703  365709  365715  365717  365723  365727  365729  365735  365739  365745  365753  366461 

科目: 来源: 题型:

【题目】如图,已知抛物线y=x2+x6x轴两个交点分别是AB(A在点B的左侧)

(1)AB的坐标;

(2)利用函数图象,写出y0时,x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A1,﹣4)、B3,﹣3)、C1,﹣1)(每个小方格都是边长为一个单位长度的正方形).

1)请画出△ABC关于原点对称的△A1B1C1,并写出A1B1C1的坐标;

2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2

查看答案和解析>>

科目: 来源: 题型:

【题目】我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1ii2=﹣1i3i2×i=(﹣1)×i=﹣ii4=(i22=(﹣121,从而对任意正整数n,我们可以得到i4n+1i4n×i=(i4n×iii4n+2=﹣1i4n+3=﹣ii4n1.那么i+i2+i3+i4++i2012+i2013++i2019的值为(  )

A.0B.1C.1D.i

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知二次函数(bc为常数)的图象经过点A(31),点C(04),顶点为点M,过点AABx轴,交y轴于点D,交该二次函数图象于点B,连结BC

1)求该二次函数的解析式及点M的坐标;

2)若将该二次函数图象向下平移个单位,使平移后得到的二次函数图象的顶点与△ABC的外心重合,求的取值;

3)点P是坐标平面内的一点,使得△ACB与△MCP,且CM的对应边为AC,请写出所有点P的坐标(直接写出结果,不必写解答过程)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在△ABC中,AB=AC=10BC=16,点DBC边上的动点(D不与点BC重合).以D为顶点作∠ADE=B,射线DEAC边于点E,过点AAFAD交射线DE于点F,连接CF

1)求证:△ABD∽△DCE

2)当DEAB(如图2),求AE的长;

3)点DBC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:如图1,抛物线x轴交于AB两点,点P在该抛物线上(P点与A B两点不重合),如果△ABPPAPB两条边的三边满足其中一边是另一边倍,则称点P为抛物线的“好”点.

1)命题:P(03)是抛物线的“好”点.该命题是_____ 真或假)命题.

2)如图2,已知抛物线C:轴交于AB两点,点P(12)是抛物线C的“好”点,求抛物线C的函数表达式.

3)在(2)的条件下,点Q在抛物线C上,求满足条件SABQ=SABPQ(异于点P)的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC是一块等边三角形的废铁片,其中AB=AC=10BC=12.利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F G分别落在ACAB上.

1)小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BDCE的长,从而确定D点和E点,再画正方形DEFG就容易了.请你帮小聪求出正方形的边长.

2)小明想:不求正方形的边长也能画出正方形.具体作法是:

①在AB边上任取一点G′,如图2作正方形G′D′E′F′

②连接BF′并延长交AC于点F

③过点FFEF′E′BC于点EFGF′G′AB于点GGDG′D′BC于点D,则四边形DEFG即为所求的正方形.你认为小明的作法正确吗?说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经过调查发现,这种商品的销售单价每提高1元,其销售量相应减少20件.设这种商品的销售单提高元.

1)现每天的销售量为 件,现每件的利润为 元.

2)求这种商品的销售单价提高多少元时,才能使每天所获利润最大?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】最近诸暨城市形象宣传片《西施故里好美诸暨》正式发布,此篇历时6个月拍摄,从不同角度向世界介绍了诸暨,现有一个不透明的口袋装有分别标有汉字“好”、“美”、“诸”、“暨”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.

1)若从中任取一个球,球上的汉字“美”的概率是多少.

2)甲从中任取一球,不放回,再从中任取一球,请用画树状图或列表的方法,求出甲取出的两个球上的汉字恰能组成“诸暨”的概率P

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线yax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于AC两点,与直线yx1交于AB两点,直线AB与抛物线的对称轴交于点E

(1)求抛物线的解板式.

(2)P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.

(3)在平面直角坐标系中,以点BECD为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.

查看答案和解析>>

同步练习册答案