科目: 来源: 题型:
【题目】如图,在平面直角坐标系内,为坐标原点,点为直线上一动点,过作轴,交轴于点(点在原点右侧),交双曲线于点,且,则当存在时,其面积为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,任意三个格点组成的三角形面积如果不小于1则称为“离心三角形”,而如果面积恰好等于1则称为“环绕三角形”.是网格图形中已知的两个格点,点是另一个格点,且满足是“离心三角形”,则是“环绕三角形”的概率是__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,甲、乙两人分别从两地出发,相向而行,已知甲先出发4分钟后,乙才出发,他们两人在之间的地相遇,相遇后,甲立即返回地,乙继续向地前行.甲到达地时停止行走,乙到达地是也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,则下列结论错误的是( )
A.两地相距2480米B.甲的速度是60米/分钟,乙的速度是80米/分钟
C.乙出发17分钟后,两人在地相遇D.乙到达地时,甲与地相距的路程是300米.
查看答案和解析>>
科目: 来源: 题型:
【题目】重庆移动为了提升新型冠状肺炎“停课不停学”期间某片区网络信号,保证广大师生网络授课、听课的质量,临时在坡度为的山坡上加装了信号塔(如图所示),信号塔底端到坡底的距离为3.9米.同时为了提醒市民,在距离斜坡底4.4米的水平地面上立了一块警示牌.当太阳光线与水平线成53°角时,测得信号塔落在警示牌上的影子长为3米,则信号塔的高约为(tan53°≈1.3)( ).
A.10.4B.11.9C.11.4D.13.4
查看答案和解析>>
科目: 来源: 题型:
【题目】最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽,赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的小正方形组成的.设直角三角形的两直角边长为,且满足,若小正方形的面积为11,则大正方形的面积为( )
A.15B.17C.30D.34
查看答案和解析>>
科目: 来源: 题型:
【题目】某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)顾客一次性购买多少件时,该网店从中获利最多?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图在锐角中,,高,两动点、分别在、上滑动(不包含端点),且,以为边长向下作正方形,设,正方形与公共部分的面积为.
(1)如图(1),当正方形的边恰好落在边上时,求的值.
(2)如图(2),当落外部时,求出与的函数关系式(写出的取值范围)并求出为何值时最大,最大是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】我们定义两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“和谐值”.
(1)求抛物线y=x2﹣2x+2与x轴的“和谐值”;
(2)求抛物线y=x2﹣2x+2与直线y=x﹣1的“和谐值”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com