科目: 来源: 题型:
【题目】图1是一台实物投影仪,图2是它的示意图,折线O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AO⊥OM,垂足为点O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
将图2中的BC绕点B向下旋转45°,使得BCD落在BC′D′的位置(如图3所示),此时C′D′⊥OM,AD′∥OM,AD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,结果精确到1cm)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在梯形ABCD中,点E,F分别在边AB,CD上,AD∥EF∥BC,EF与BD交于点G,AD=5,BC=10,=.
(1)求EF的长;
(2)设=,=,那么= ,= .(用向量、表示)
查看答案和解析>>
科目: 来源: 题型:
【题目】如果直线l把△ABC分割后的两个部分面积相等,且周长也相等,那么就把直线l叫做△ABC的“完美分割线”,已知在△ABC中,AB=AC,△ABC的一条“完美分割线”为直线l,且直线l平行于BC,若AB=2,则BC的长等于_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,抛物线C:y=x2经过变换可得到抛物线C1:y1=a1x(x﹣b1),C1与x轴的正半轴交于点A,且其对称轴分别交抛物线C、C1于点B1、D1.此时四边形OB1A1D1恰为正方形:按上述类似方法,如图2,抛物线C1:y1=a1x(x﹣b1)经过变换可得到抛物线C2:y2=a2x(x﹣b2),C2与x轴的正半轴交于点A2,且其对称轴分别交抛物线C1、C2于点B2、D2.此时四边形OB2A2D2也恰为正方形:按上述类似方法,如图3,可得到抛物线C3:y3=a3x(x﹣b3)与正方形OB3A3D3,请探究以下问题:
(1)填空:a1= ,b1= ;
(2)求出C2与C3的解析式;
(3)按上述类似方法,可得到抛物线n:yn=anx(x﹣bn)与正方形OBnAnDn(n≥1)
①请用含n的代数式直接表示出n的解析式;
②当x取任意不为0的实数时,试比较y2018与y2019的函数值的大小关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:正方形ABCD,∠EAF=45°.
(1)如图,当点E、F分别在边BC、CD上,连接EF,求证:EF=BE+DF;
童威同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF绕点A顺时针旋转90°,得△ABG,所以△ADF≌△ABG.
(2)如图,点M、N分别在边AB、CD上,且BN=DM.当点E、F分别在BM、DN上,连接EF,探究三条线段EF、BE、DF之间满足的数量关系,并证明你的结论.
(3)如图,当点E、F分别在对角线BD、边CD上.若FC=2,则BE的长为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线交反比例函数图象于点B.
(1)求反比例函数和直线AC的解析式;
(2)求△ABC的面积;
(3)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,请直接写出符合条件的所有D点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com