相关习题
 0  365820  365828  365834  365838  365844  365846  365850  365856  365858  365864  365870  365874  365876  365880  365886  365888  365894  365898  365900  365904  365906  365910  365912  365914  365915  365916  365918  365919  365920  365922  365924  365928  365930  365934  365936  365940  365946  365948  365954  365958  365960  365964  365970  365976  365978  365984  365988  365990  365996  366000  366006  366014  366461 

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,EBC上,GCD延长线上,AEBG相交于点M,若AEBGtanBME2,菱形ABCD面积为,则AB的长_____

查看答案和解析>>

科目: 来源: 题型:

【题目】在等腰△ABC中,ABACBC4⊙O是△ABC的外接圆,若⊙O的半径为4,则△ABC的面积为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线yax2+bx+ca0)的对称轴为直线x=﹣1,与x轴的一个交点在点(﹣30)和(﹣20)之间,其部分图象如图,则下列结论:①abc0②2ab0③a+b+c0④4acb20;其中正确结论的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】为迎接2016年中考,某中学对全校九年级学生进行了一次数学模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:

1)这次调査中,一共抽取了多少名学生?

2)求样本中表示成绩为“中”的人数,并将条形统计图补充完整;

3)该学校九年级共有1000人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?

查看答案和解析>>

科目: 来源: 题型:

【题目】1)方法选择:如图①,四边形ABCD是⊙O的内接四边形,连接ACBDABBCAC.求证:BDAD+CD

小颖认为可用截长法证明:在DB上截取DMAD,连接AM…

小军认为可用补短法证明:延长CD至点N,使得DNAD…

请你选择一种方法证明.

2)类比探究:(探究1)如图②,四边形ABCD是⊙O的内接四边形,连接ACBDBC是⊙O的直径,ABAC.试用等式表示线段ADBDCD之间的数量关系,井证明你的结论.

(探究2)如图③,四边形ABCD是⊙O的内接四边形,连接ACBD.若BC是⊙O的直径,∠ABC30°,则线段ADBDCD之间的等量关系式是   

3)拓展猜想:如图④,四边形ABCD是⊙O的内接四边形,连接ACBD.若BC是⊙O的直径,BCACABabc,则线段ADBDCD之间的等量关系式是   

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线轴交于点,与轴交于点,抛物线经过点.

(1)求点B的坐标和抛物线的解析式;

(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,

在线段上运动,若以为顶点的三角形与相似,求点的坐标;

轴上自由运动,若三个点中恰有一点是其它两点所连线段的中点(三点重合除外),则称三点为共谐点.请直接写出使得三点成为共谐点的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读以下材料,并按要求完成相应地任务:

莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在ABC中,Rr分别为外接圆和内切圆的半径,OI分别为其外心和内心,则.下面是该定理的证明过程(部分):

延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DMAN

∵∠D=N,∴∠DMI=NAI(同弧所对的圆周角相等),

∴△MDI∽△ANI.∴,∴

如图2,在图1(隐去MDAN)的基础上作⊙O的直径DE,连接BEBDBIIF

DE是⊙O的直径,∴∠DBE=90°

∵⊙IAB相切于点F,∴∠AFI=90°

∴∠DBE=IFA

∵∠BAD=E(同弧所对圆周角相等),

∴△AIF∽△EDB

,∴

任务:(1)观察发现: (用含Rd的代数式表示);

2)请判断BDID的数量关系,并说明理由.

3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

4)应用:若ABC的外接圆的半径为5cm,内切圆的半径为2cm,则ABC的外心与内心之间的距离为 cm

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.

求出每天的销售利润与销售单价之间的函数关系式;

求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?

如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.

请根据以上信息,解答下列问题:

(1)这次被调查的学生共有多少人?

(2)请将条形统计图补充完整;

(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?

(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

查看答案和解析>>

科目: 来源: 题型:

【题目】有一种落地晾衣架如图①所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图②是支撑杆的平面示意图,ABCD分别是两根不同长度的支撑杆,夹角∠BODα.若AO85 cmBODO65 cm.问:当α74°时,较长支撑杆的端点A离地面的高度h约为______cm.(参考数据:sin 37°≈0.6cos 37°≈0.8sin 53°≈0.8cos 53°≈0.6

查看答案和解析>>

同步练习册答案