科目: 来源: 题型:
【题目】某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项.现随机抽查了部分学生,并将其结果绘制成如下不完整的条形图和扇形图.
抽取的学生最喜欢体育活动的条形统计图
抽取的学生最喜欢体育活动的扇形统计图
请结合以上信息解答下列问题:
(1)在这次调查中一共抽查了_____学生,扇形统计图中“乒乓球”所对应的圆心角为_____度,并请补全条形统计图;
(2)己知该校共有1200名学生,请你估计该校最喜爱跑步的学生人数;
(3)若在“排球、足球、跑步、乒乓球”四个活动项目任选两项设立课外兴趣小组,请用列表法或画树状图的方法求恰好选中“排球、乒乓球”这两项活动的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,的半径为2,圆心在坐标原点,正方形的边长为2,点、在第二象限,点、在上,且点的坐标为(0,2).现将正方形绕点按逆时针方向旋转150°,点运动到了上点处,点、分别运动到了点、处,即得到正方形(点与重合);再将正方形绕点按逆时针方向旋转150°,点运动到了上点处,点、分别运动到了点、处,即得到正方形(点与重合),……,按上述方法旋转2020次后,点的坐标为( )
A.(0,2)B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.
例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P为△ABC的自相似点.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点M是曲线C:上的任意一点,点N是x轴正半轴上的任意一点.
(1) 如图2,点P是OM上一点,∠ONP=∠M, 试说明点P是△MON的自相似点; 当点M的坐标是,点N的坐标是时,求点P 的坐标;
(2) 如图3,当点M的坐标是,点N的坐标是时,求△MON的自相似点的坐标;
(3) 是否存在点M和点N,使△MON无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】小明研究了这样一道几何题:如图1,在△ABC中,把AB点A顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:
特例验证:
(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为 .
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=6,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线(m,n 为常数).
(1)若抛物线的的对称轴为直线 x=1,且经过点(0,-1),求 m,n 的值;
(2)若抛物线上始终存在不重合的两点关于原点对称,求 n 的取值范围;
(3)在(1)的条件下,存在正实数 a,b( a<b),当 a≤x≤b 时,恰好有,请直接写出 a,b 的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下面的材料:
如果函数 y=f(x)满足:对于自变量 x 的取值范围内的任意 x1,x2,
(1)若 x1<x2,都有 f(x1)<f(x2),则称 f(x)是增函数;
(2)若 x1<x2,都有 f(x1)>f(x2),则称 f(x)是减函数.
例题:证明函数f(x)= (x>0)是减函数.
证明:设 0<x1<x2,
f(x1)﹣f(x2)=.
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴>0.即 f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函数 f(x)= (x>0)是减函数.
根据以上材料,解答下面的问题:
已知函数.
f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=.
(1)计算:f(﹣3)= ,f(﹣4)= ;
(2)猜想:函数是 函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.
(1)求证:AE是⊙O的切线;
(2)若DH=9,tanC=,求直径AB的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥BD.
(1)求证:四边形OCED为矩形;
(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读以下材料,并按要求完成相应的任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数、公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和 r 分别为外接圆和内切圆的半径,O 和 I 分别为其外心和内心,则OI R2Rr .
下面是该定理的证明过程(借助了第(2)问的结论):
延长AI 交⊙O 于点 D,过点 I 作⊙O 的直径 MN,连接 DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI.∴,∴ IA ID IM IN ①
如图②,在图 1(隐去 MD,AN)的基础上作⊙O 的直径DE,连接BE,BD,BI,IF
∵DE 是⊙O 的直径,∴∠DBE=90°.
∵⊙I 与 AB 相切于点 F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB.
∴,∴②,
由(2)知:,
∴
又∵,
∴ 2Rr(R d )(R d ) ,
∴ R d 2Rr
∴ d R 2Rr
任务:(1)观察发现: IM R d , IN (用含R,d 的代数式表示);
(2)请判断 BD 和 ID 的数量关系,并说明理由.(请利用图 1 证明)
(3)应用:若△ABC 的外接圆的半径为 6cm,内切圆的半径为 2cm,则△ABC 的外心与内心之间的距离为 cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com