科目: 来源: 题型:
【题目】、为的切线,切点分别为点、,延长交于点,交的延长线于点,连接、,与交于点.
(1)如图1,求证:;
(2)如图2,点是弧的中点,连接交AD于点,求证:;
(3)如图3,在(2)的条件下:连接并延长交于点,连接交于点,若,,求线段的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点为坐标原点,抛物线交轴于、两点,交轴于点,.
(1)求抛物线的解析式;
(2)如图2,为第一象限内抛物线上一点,的面积为3时,且,求点坐标;
(3)如图3,在(2)的条件下,、为抛物线上的点,且两点关于抛物线对称轴对称,过作轴垂线交过点且平行于轴的直线于,交抛物线于,延长至,连接,,当线段时,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】某快递公司甲、乙两名快递员7月上旬10天里派送快递,乙比甲晚工作一段时间,工作期间快递员甲因事停工3天,各自的工作效率一定,他们各自的工作量(件)随工作时间(天)变化的图像如图所示.则有下列说法:①甲工人的工作效率为60件/天;②乙工人每天比甲工人少送10件;③甲工人一共送420件;④乙比甲少工作2天.其中正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与探究
如图,抛物线与轴交于两点,与轴交于点.点是射线上一点,过点作直线,与轴右侧的抛物线交于点.点从点出发,沿射线以每秒1个单位长度的速度向右运动,设点运动的时间为t秒.请解答下列问题:
(1)求直线AC的表达式与点的坐标;
(2)在点运动的过程中,若以点,,,为顶点的四边形是平行四边形,求运动的时间;
(3)设点与点关于直线对称,
①点的坐标为 (用含的代数式表示,结果需化简);
②当点落在抛物线的对称轴上且点在线段上时,在平面内是否存在点F,使得以点,,,F为顶点的四边形为菱形?若存在,请求出此时点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与实践
在数学活动课上,老师给出,,.点为的中点,点在射线上运动,将线段绕点逆时针旋转90°得到线段,连接,.过点作,交直线于点.
(1)若点在线段上,如图1,
①根据题意补全图1(不要求尺规作图);
②判断与的数量关系并加以证明;
(2)若点为线段的延长线上一点,如图2,且,,补全图2,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】请阅读下列材料,并完成相应的任务.
古希腊几何学家海伦,在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了三角形面积的计算公式(海伦公式):如果一个三角形的三边长分别为,记,那么三角形的面积是.
印度算术家波罗摩笈多和婆什迦罗还给出了四边形面积的计算公式:如果一个四边形的四边长分别为,记,那么四边形的面积是(其中,和表示四边形的一组对角的度数)
根据上述信息解决下列问题:
(1)已知三角形的三边是4,6,8,则这个三角形的面积是
(2)小明的父亲是工程师,设计的某个零件的平面图是如图的四边形,已知,,,,,.求出这个零件平面图的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】某县教育局为了对该区八年级数学学科教学质量进行检查,对该区八年级的学生进行摸底,为了解摸底的情况,进行了抽样调查,过程如下,请将有关问题补充完整.
收集数据:随机抽取学校与学校的各20名学生的数学成绩(单位:分)进行
学校 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
学校 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述数据:按如下数据段整理、描述这两组数据
分段 学校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
学校 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
学校 |
分析数据:两组数据的平均数、中位数、众数、方差如下表:
统计量 学校 | 平均数 | 中位数 | 众数 | 方差 |
学校 | 81.85 | 88 | 91 | 268.43 |
学校 | 81.95 | 86 | m | 115.25 |
得出结论:
:若学校有800名八年级学生,估计这次考试成绩80分以上(包含80分)人数为多少人?
:根据表格中的数据,推断出哪所学校学生的数学水平较高,并说明理由.(至少从两个不同的角度说明推断的合理性)
查看答案和解析>>
科目: 来源: 题型:
【题目】小岛在港口的南偏西45°方向,距离港口81海里处.甲船从出发,沿方向以6海里/时的速度驶向港口,乙船从港口出发,沿南偏东60°方向,以15海里/时的速度驶离港口.现两船同时出发.
(1)出发后 小时两船与港口的距离相等;
(2)出发几小时后乙船在甲船的正东方向?(结果精确到0.1小时,参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com