精英家教网 > 高中数学 > 题目详情
3.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a-2),则a=(  )
A.4B.6C.8D.10

分析 根据正态分布的对称性即可得出a-2=2.

解答 解:∵随机变量ξ~N(l,25),
∴P(ξ≤0)=P(ξ≥2),
∴a-2=2,即a=4.
故选A.

点评 本题考查了正态分布的特点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若数列{an}满足:a1=1,an+1=$\frac{1}{2}$an(n∈N*),则an=$\frac{1}{{2}^{n-1}}$;数列{an}的前n项和Sn=2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.安排4名教师到3所不同的农村学校支教,每名教师去1所学校,每个学校至少安排1名教师,则不同的安排方式共有(  )
A.12种B.18种C.24种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)及其导数f'(x),若存在x0使得f(x0)=f'(x0),则称x0是f(x)的一个“巧值点”.给出下列五个函数:①f(x)=x2,②f(x)=e-x,③f(x)=lnx,④f(x)=tanx,其中有“巧值点”的函数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x||x-1|<1},集合B={x|(x-1)(x-2)>0},则A∩B等于(  )
A.(0,1)B.(1,2)C.(-2,0)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>-(x+1)f′(x),则 不等式f(x+l)>(x-2)f(x2-5)的解集是(  )
A.(-2,3)B.(2,+∞)C.($\sqrt{5}$,3)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数$\frac{{3-5{i}}}{{1+{i}}}$的实部与虚部之和为(  )
A.5B.3C.-3D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)是定义在[-1,1]上的奇函数,f(-1)=-1,且对任意a,b∈[-1,1],当a≠b时,都有$\frac{f(a)-f(b)}{a-b}>0$;
(1)解不等式f$(x-\frac{1}{2})<f(2x-\frac{1}{4})$;
(2)若f(x)≤m2-2km+1对所有x∈[-1,1],k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,若$\overrightarrow{AB}$$+\overrightarrow{AC}$=4$\overrightarrow{AP}$,则$\overrightarrow{PB}$=(  )
A.$\frac{3}{4}$$\overrightarrow{AB}$$-\frac{1}{4}$$\overrightarrow{AC}$B.-$\frac{3}{4}$$\overrightarrow{AB}$$+\frac{1}{4}$$\overrightarrow{AC}$C.-$\frac{1}{4}$$\overrightarrow{AB}$$+\frac{3}{4}$$\overrightarrow{AC}$D.$\frac{1}{4}$$\overrightarrow{AB}$$-\frac{3}{4}$$\overrightarrow{AC}$

查看答案和解析>>

同步练习册答案