精英家教网 > 高中数学 > 题目详情
14.安排4名教师到3所不同的农村学校支教,每名教师去1所学校,每个学校至少安排1名教师,则不同的安排方式共有(  )
A.12种B.18种C.24种D.36种

分析 根据题意,分2步进行分析:1、将4名教师分成3组,其中1组2人,其余2组各1人2、将分好的3组对应3所学校,进而由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、将4名教师分成3组,其中1组2人,其余2组各1人,有C42=6种分法;
②、将分好的3组对应3所学校,有A33=6种情况;
则不同的分配方案种数是6×6=36种;
故选:D.

点评 本题考查分步计数原理的运用,解题时要先分组,再进行对应,其次注意正确运用排列组合数公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,任意相邻两项为坐标的点P(an,an+1)均在直线y=2x上,数列{bn}为等差数列,且满足b1+b3=4,b6=6,a1=2b1
(Ⅰ)求证数列{an}是等比数列,并求出它的通项公式
(Ⅱ)若cn=-anbn,Sn=c1+c2+…+cn,求Sn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则ω和φ的值分别是(  )
A.ω=2,φ=$\frac{π}{4}$B.ω=2,φ=-$\frac{π}{4}$C.ω=$\frac{1}{2}$,φ=$\frac{π}{8}$D.ω=$\frac{1}{2}$,φ=-$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中正确命题的个数是(  )
①和同一平面垂直的两个平面平行;
②和同一平面垂直的两条直线平行;
③两条直线与一个平面所成的角相等,则这两条直线平行;
④一条直线与两个平面所成的角相等,则这两个平面平行.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C所对的边分别为a,b,c,且acosB=(3c-b)cosA.
(1)求sinA;
(2)若a=2$\sqrt{2}$,且△ABC的面积为$\sqrt{2}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(0)=1,则不等式f(x)<ex的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数$f(x)=lnx+\frac{k}{x},k∈R$.若曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,求f(x)的单调递减区间和极小值(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a-2),则a=(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.数列{an}的前n项和为Sn,且满足${a_n}+{a_{n+1}}=\frac{1}{2}$(n∈N*),a2=2,则S21=$\frac{7}{2}$.

查看答案和解析>>

同步练习册答案