精英家教网 > 高中数学 > 题目详情
19.设|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,∠AOB=60°,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=2(λ≥0,μ≥0),则$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范围是(0,$\frac{2\sqrt{3}}{3}$].

分析 由条件求得|$\overrightarrow{OP}$|2,用数量积的几何意义求出$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影x,并用λ表示,借助于二次函数求x 范围.

解答 解:∵|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,∠AOB=60°,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=2(λ≥0,μ≥0),
∴|$\overrightarrow{OP}$|2=[λ$\overrightarrow{OA}$+(2-λ)$\overrightarrow{OB}$]2=${4λ}^{2}+4(2-λ)^{2}+2λ(2-λ)\overrightarrow{OA}•\overrightarrow{OB}$=4λ2-8λ+16=4(λ-1)2+12,
∴$\overrightarrow{OA}$•$\overrightarrow{OP}$=$\overrightarrow{OA}$•(λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$)=4λ+2μ,
设$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影为x,则$\overrightarrow{OA}$•$\overrightarrow{OP}$=x|$\overrightarrow{OP}$|=x$\sqrt{4{λ}^{2}-8λ+16}$=4λ+2μ=4,
所以x=$\frac{4}{\sqrt{4{λ}^{2}-8λ+16}}$=$\frac{2}{\sqrt{{λ}^{2}-2λ+4}}$=$\frac{2}{\sqrt{(λ-1)^{2}+3}}$,λ≥0,
所以x取值范围为(0,$\frac{2\sqrt{3}}{3}$].
故答案为:(0,$\frac{2\sqrt{3}}{3}$].

点评 本题考点是向量在几何中的应用,综合考查了向量的线性运算,向量的数量积的运算及数量积公式,熟练掌握向量的相关公式是解题的关键,是中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知i是虚数单位,复数z满足zi=1+i,则z=1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$都为单位向量,且$\overrightarrow{a}$⊥(2$\overrightarrow{b}$-$\overrightarrow{a}$),则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.《九章算术》是中国古代的数学专著,其中记载:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”此文阐述求两个数的最大公约数的重要方法“更相减损术”.艾学习同学在使用“更相减损术”求588与315的最大公约数时,计算过程第二步不小心破损导致过程不完整,“(588,315)→(•,315)→(273,42)→…”艾学习同学计算过程中破损处应填写273.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在四棱锥 P-ABCD中,ABCD是正方形,若该四棱锥各棱长均相等,G是棱PA的中点,则直线BG与直线PC所成角的余弦值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且sin2A-sinA=0.
(1)求角A的大小;
(2)若b=2,且sinB=2sinC,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{8}{3}$B.3C.$\frac{10}{3}$D.$\frac{11}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,右顶点为A,上顶点为B,以坐标原点O为圆心,椭圆C的短轴长为直径作圆O,截直线AB的弦长为$\frac{6\sqrt{7}}{7}$(a2-b2).
(1)求椭圆C的标准方程;
(2)是否存在过椭圆C的右焦点F的直线l,与椭圆C相交于G、H两点,使得△AFG与△AFH的面积比为1:2?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足关系式Sn+an=$\frac{n-1}{n(n+1)}$(n∈N*),设bn=an+$\frac{1}{n(n+1)}$.
(1)求证:数列{bn}为等比数列;
(2)求an及Sn
(3)设cn=Sn+nan,Tn为数列{cn}的前n项和,求证:Tn<1.

查看答案和解析>>

同步练习册答案