精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C的对边分别为a,b,c,且sin2A-sinA=0.
(1)求角A的大小;
(2)若b=2,且sinB=2sinC,求a.

分析 (1)由2sinAcosA-sinA=0,sinA≠0,得cosA=$\frac{1}{2}$,即可求得A,
(2)由sinB=2sinC,得b=2c=2,c=1,
在△ABC中,由余弦定理得:a2=b2+c2-2bc•cosA=4+1-2×$2×1×\frac{1}{2}$=3即可.

解答 解:(1)∵sin2A-sinA=0.
∴2sinAcosA-sinA=0
∵sinA≠0,∴cosA=$\frac{1}{2}$,且A∈(0,π),
∴$A=\frac{π}{3}$;
(2)∵sinB=2sinC,∴$\frac{b}{c}=\frac{sinB}{sinC}=2$,即b=2c=2,∴c=1,
在△ABC中,由余弦定理得:a2=b2+c2-2bc•cosA=4+1-2×$2×1×\frac{1}{2}$=3,
∴$a=\sqrt{3}$.

点评 本题考查了正余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在一次共有15000名考生的某市高二的联考中,这些学生的数学成绩ξ服从正态分布 N(100,δ2),且p(80<ξ≤100)=0.35.若按成绩分层抽样的方式抽取100份试卷进行分析,则应从120分以上的试卷中抽取(  )
A.20份B.15份C.10份D.5份

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果{an}为递增数列,则{an}的通项公式可以是(  )
A.an=-n+2(n∈N*)B.an=1+log3n(n∈N*)C.an=$\frac{1}{{2}^{n}}$(n∈N*)D.an=n2-3n(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(1,-2).若 $\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m=-$\frac{1}{2}$;若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数 m=2;若|$\overrightarrow{a}$|<|$\overrightarrow{b}$|,则实数m的取值范围是(-2,2),.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,∠AOB=60°,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=2(λ≥0,μ≥0),则$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范围是(0,$\frac{2\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知Sn是等差数列{an}的前n项和,且a1=1,S6=3S3,则S9=(  )
A.9B.15C.21D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.三角形ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cos A-sin B),则$\frac{sinθ}{|sinθ|}$+$\frac{cosθ}{|cosθ|}$+$\frac{tanθ}{|tanθ|}$的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在矩形ABCD中,F是边CD的中点,M是AF与BD交点,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AF}$
(2)证明:M是对角线BD的三等分点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在边长为1的等边△ABC中,AA1=BB1=CC1=x(0<x<1),△A1B1C1的面积为y.
(1)试写出y与x的函数关系式;
(2)求y的最小值.

查看答案和解析>>

同步练习册答案