精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
x
+alnx,常数a≠0,求f(x) 的单调区间及极值.
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:先求出f′(x)=-
1
x2
+
a
x
=-
1-ax
x2
,讨论①a<0时,f′(x)<0,f(x)在(0,+∞)递减,②a>0时,得出f(x)在(0,
1
a
)递减,在(
1
a
,+∞)递增,
从而f(x)极小值=f(
1
a
)=a-alna,无极大值.
解答: 解:∵f′(x)=-
1
x2
+
a
x
=-
1-ax
x2

①a<0时,f′(x)<0,f(x)在(0,+∞)递减,
②a>0时,令f′(x)>0,解得:x>
1
a

令f′(x)<0,解得:0<x<
1
a

∴f(x)在(0,
1
a
)递减,在(
1
a
,+∞)递增,
∴f(x)极小值=f(
1
a
)=a-alna,无极大值.
点评:本题考察了函数的单调性,导数的应用,渗透了分类讨论思想,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6个人排成一排,其中甲、乙不相邻的排法种数是(  )
A、288B、480
C、600D、640

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1+sinθ+cosθ)(sin
θ
2
-cos
θ
2
)
2+2cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,a2n=a2n-1+(-1)n,a2n+1=a2n+3n(n∈N*).
(1)求a3、a5、a7的值;
(2)求a2n-1(用含n的式子表示);
(3)(文)记bn=a2n-1+a2n,数列{bn}(n∈N*)的前n项和为Sn,求Sn(用含n的式子表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aex-1(e为自然对数的底数,a为常数)的图象与直线y=x相切.
(Ⅰ)求a的值,并求函数y=f(x)-x的值域;
(Ⅱ)设g(x)=lnx+1,证明:当x>0时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
ln22+ln
1
4
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

新能源汽车是指利用除汽油、燃油之外的其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低.为了配合我国“节能减排”战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):
燃料电池轿车混合动力轿车氢能源动力轿车
标准型100150y
豪华型300450600
按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.
(1)求y的值;
(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看做一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;
(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测他们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4,把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:{x|x2+x-6=0},条件q:{x|mx+1=0},且q是p的充分不必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且满足:a3=6,a5+a7=24.
(1)求an和Sn
(2)设bn=(
2
 an,求数列{bn}的前项和Tn

查看答案和解析>>

同步练习册答案