精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,a2n=a2n-1+(-1)n,a2n+1=a2n+3n(n∈N*).
(1)求a3、a5、a7的值;
(2)求a2n-1(用含n的式子表示);
(3)(文)记bn=a2n-1+a2n,数列{bn}(n∈N*)的前n项和为Sn,求Sn(用含n的式子表示).
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由a1=1,a2n=a2n-1+(-1)n,a2n+1=a2n+3n(n∈N*),分别令n=1,2,3可求结果;
(2)累加法:a2n+1-a2n-1=3n+(-1)n(n∈N*),得a2n-1-a2n-3=3n-1+(-1)n-1,a2n-3-a2n-5=3n-2+(-1)n-2,…a5-a3=32+(-1)2,a3-a1=31+(-1)1,以上各式累加可得;
(3)首先根据bn=a2n-1+a2n,以及(2)中求出的a2n-1的表达式,求出数列{bn}的通项,然后求和即可.
解答: 解:(1)由题意得,a1=1,a2n=a2n-1+(-1)n,a2n+1=a2n+3n(n∈N*),
∴a2=a1+(-1)n=0,a3=a2+31=3,a4=a3+1=4,a5=a4+32=13,
a6=a5-1=12,a7=a6+33=39,
∴a3、a5、a7的值分别为:3、13、39;
(2)将a2n=a2n-1+(-1)n代入a2n+1=a2n+3n(n∈N*),
得a2n+1-a2n-1=3n+(-1)n(n∈N*),
∴a2n-1-a2n-3=3n-1+(-1)n-1
a2n-3-a2n-5=3n-2+(-1)n-2

a5-a3=32+(-1)2
a3-a1=31+(-1)1
以上各式累加得,a2n-1-a1=31+32+…3n-1+[(-1)1+(-1)2+…+(-1)n-1].
=
3(1-3n-1)
1-3
+
-[1-(-1)n-1]
1-(-1)
=
3n-(-1)n
2
-2
∴a2n-1=
3n-(-1)n
2
-1(n∈N*).
(3)(文)由(2)可知,a2n-1=
3n-(-1)n
2
-1(n∈N*
∴bn=a2n-1+a2n=2a2n-1+(-1)n=[
3n-(-1)n
2
-1]×2+(-1)n=3n-2(n∈N*
∴sn=b1+b2+b3+…+bn
=(3-2)+(32-2)+(33-2)+…+(3n-2)
=
3(1-3n)
1-3
-2n
=
1
2
.3n+1-2n-
3
2
(n∈N*).
点评:本题考查了由数列递推式求数列通项,考查数列求和,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:x≠1或y≠2,命题q:x+y≠3,则命题p是q的(  )
A、充分不必要
B、必要不充分
C、充要条件
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2+bx.
(1)当b=a-1时,讨论f(x)的单调性;
(2)当a=0时,若函数f(x)有两个不同的零点.求b的取值范围;
(3)设A(x1,y1),B(x2,y2)为函数f(x)的图象上的两点,记k为直线AB的斜率,x0=
x1+x2
2
.求证f′(x0)<k.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an
(2)若数列{an}为等差数列,且A=1,C=-2.
①求an
②设bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2x,O为坐标原点,经过点M(2,0)的直线l交抛物线于A,B两点,P为抛物线C上一点.
(Ⅰ)若直线l垂直于x轴,求|
1
kPA
-
1
kPB
|的值;
(Ⅱ)求三角形OAB的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆C与两圆(x+
3
2+y2=1,(x-
3
2+y2=1中的一个内切,另一个外切.
(1)求圆心C的轨迹L的方程
(2)求直线y=x+1被轨迹L截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
+alnx,常数a≠0,求f(x) 的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
3
x3-ax2-4
(1)当a=1时,求f(x)的单调区间;
(2)若函数f(x)在(3,+∞)是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x(x-4) ,x≥0
x(x+4), x<0

(1)求函数f(x)的零点;
(2)解不等式f(x)<-3;
(3)求f(a+1)的值.

查看答案和解析>>

同步练习册答案