| x | -1 | 0 | 4 |
| f(x) | 1 | 2 | 2 |
分析 ①,根据函数的单调性和特殊值,可判断真假;
②,根据已知导函数的图象,易分析出f(x)在[0,2]上的单调性,进而判断③的真假;,;
③,由导函数y=f′(x)的图象可知函数f(x)的大致图象如图,函数y=f(x)与直线y=a的图象有四个交点可能为0、1、2、4个,可判断真假;
④,根据已知导函数的图象,及表中几个点的坐标,易分析出0≤t≤5,均能保证x∈[-1,t]时,f(x)的最大值是2,进而判断③的真假;
⑤,根据函数f(x)的大致图象,判断
解答
①②④解:对于①,∵由导函数的图象知,函数f(x)的最大值点为0与4,故①正确;
对于②,由已知中y=f′(x)的图象可得在[0,2]上f′(x)<0,即f(x)在[0,2]是减函数,即②正确;
对于③,由导函数y=f′(x)的图象可知,函数在[-1,0],[2,4]上为增函数,
则[0,2],[4,5]上为减函数,且函数在x=0和x=4取得极大值f(0)=2,f(4)=2,
在x=2取得极小值f(2)=0,则函数f(x)的大致图象如图:则函数y=f(x)与直线y=a的图象有四个交点可能为0、1、2、4个,即③错误
对于④,由已知中y=f′(x)的图象,及表中数据可得当x=0或x=4时,函数取最大值2,若x∈[-1,t]时,f(x)的最大值是2,那么0≤t≤5,故t的最大值为5,即④正确;
对于⑤,根据函数f(x)的大致图象,判断⑤错误;
故答案为:①②④.
点评 本题考查的知识点是命题的真假判断,利用导数研究函数的单调性,其中根据已知,分析出函数的大致形状,利用图象分析函数的性质是解答本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | y=-x | B. | y=cosx | C. | y=${x^{\frac{2}{5}}}$ | D. | y=-x2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{22}{3}$ | B. | $\frac{20}{3}$ | C. | $\frac{16}{3}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com