【题目】已知函数
,
.
(1)若对任意
,都有
成立,求实数
的取值范围;
(2)若存在
,使
成立,求实数
的取值范围;
(3)若对任意
,都有
成立,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的短轴长为2,离心率为
,
,
分别是椭圆的右顶点和下顶点.
![]()
(1)求椭圆
的标准方程;
(2)已知
是椭圆
内一点,直线
与
的斜率之积为
,直线
分别交椭圆于
两点,记
,
的面积分别为
,
.
①若
两点关于
轴对称,求直线
的斜率;
②证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋内有
个不同的红球,
个不同的白球,
(1)从中任取
个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记
分,取一个白球记
分,从中任取
个球,使总分不少于
分的取法有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】临近开学季,某大学城附近的一款“网红”书包销售火爆,其成本是每件15元.经多数商家销售经验,这款书包在未来1个月(按30天计算)的日销售量
(个)与时间
(天)的关系如下表所示:
时间( | 1 | 4 | 7 | 11 | 28 | … |
日销售量( | 196 | 184 | 172 | 156 | 88 | … |
未来1个月内,前15天每天的价格
(元/个)与时间
(天)的函数关系式为
(且
为整数),后15天每天的价格
(元/个)与时间
(天)的函数关系式为
(且
为整数).
(1)认真分析表格中的数据,用所学过的一次函数、反比例函数的知识确定一个满足这些数据
(个)与
(天)的关系式;
(2)试预测未来1个月中哪一天的日销售利润最大,最大利润是多少?
(3)在实际销售的第1周(7天),商家决定每销售1件商品就捐赠
元利润
给该城区养老院.商家通过销售记录发现,这周中,每天扣除捐赠后的日销售利润随时间
(天)的增大而增大,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com