精英家教网 > 高中数学 > 题目详情
已知:集合A={x|-2≤x≤6},B={x|x2-2mx-8m2≤0},若B⊆A,求实数m的取值范围.
考点:集合的包含关系判断及应用
专题:计算题,集合
分析:对m讨论,求出x2-2mx-8m2≤0的解,由B⊆A进而确定实数m的取值范围.
解答: 解:∵x2-2mx-8m2=(x-4m)(x+2m)≤0
①当m=0时,B={0},B⊆A成立,
②当m>0时,B={x|-2m≤x≤4m},
∵B⊆A,∴-2≤-2m,4m≤6,
解得,m≤1.
②当m<0时,B={x|4m≤x≤-2m},
∵B⊆A,∴-2≤4m,-2m≤6,
解得,m≥-
1
2

综上所述,实数m的取值范围为[-
1
2
,1].
点评:本题考查了集合之间的包含关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知(2
x
+
3x2
n的展开式中,第5项的二项式系数与第3项的二项式系数之比是7:2.
(Ⅰ)求展开式中含x 
11
2
项的系数;
(Ⅱ)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A1(1,0)、A2(2,2)、A3(3,1)、B1(0,1)、B2(2,2)、B3(1,3).
(1)求由A1,A2,A3构成的线性回归方程,以及由B1,B2,B3构成的线性回归方程;
(2)试比较两组点的线性相关程度.(其中r=
Lxy
Lxx
Lyy
,Lxy=
n
i=1
xiyi-n
.
x
.
y
,Lxx=
n
i=1
xi2-n
.
x
2,Lyy=
n
i=1
yi2-n
.
y
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(3sinx,
3
)
b
=(cosx,cos2x-
1
2
),函数f(x)=
a
b

(1)求函数f(x)的周期;
(2)写出函数f(x)的递减区间;
(3)求f(x)在[0,
π
2
]上的最值并求出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱ABCD-A1B1C1D1中(侧棱与底面垂直的棱柱叫直棱柱),底面ABCD是边长为4的菱形,且∠DAB=60°,AA1=2
3
,P、Q分别是棱A1D1和AD的中点,R为PB的中点.
(Ⅰ)求证:QR⊥平面PBC;
(Ⅱ)求二面角R-QC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
2
3
,a2=1,3an=4n-1-an-2(n≥3).
(1)求a3的值;
(2)证明:数列{an-an-1}(n≥2)是等比数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosx-
3
sin2
x.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[0,
π
4
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:x2+(y-1)2=r2(r>0)与x轴交于A(-2,0),B(2,0)两点,O为坐标原点,射线y=x(x≥0)交圆M于点C,射线y=-x(x≥0)交圆M于点D.
(1)求r的值和弦CD所在直线的方程;
(2)弦CD上是否存在一点N,使得∠AND=∠BND?若存在,求出点N的坐标;若不存在,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈R,若(x+y-3)+(x-4)i=0,则x-y=
 

查看答案和解析>>

同步练习册答案