精英家教网 > 高中数学 > 题目详情
1.若实数x,y满足$\left\{\begin{array}{l}2x+y≤4\\ x+3y≤7\\ x≥0\\ y≥0\end{array}\right.$则z=3x+2y的最大值为7.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=3x+2y得y=-$\frac{3}{2}$x+$\frac{1}{2}$z
平移直线y=-$\frac{3}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=-$\frac{3}{2}$x+$\frac{1}{2}$z经过点A时,直线y=-$\frac{3}{2}$x+$\frac{1}{2}$z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{2x+y=4}\\{x+3y=7}\end{array}\right.$,解得A(1,2),
代入目标函数z=3x+2y得z=3×1+2×2=7.
即目标函数z=3x+2y的最大值为7.
故答案为:7.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.点A(sin2017°,cos2017°)在直角坐标平面上位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=-$\sqrt{3}sinxsin(x+\frac{π}{2})+{cos^2}x-\frac{1}{2}$(x∈R).
(1)求函数f(x)的单调递增区间;
(2)函数f(x)的图象上所有点的横坐标扩大到原来的2倍,再向右平移$\frac{π}{6}$个单位长度,得g(x)的图象,求函数y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合P={x|1<3x≤9},Q={1,2,3},则P∩Q=(  )
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=-Acos(ωx+ϕ)+$\sqrt{3}$Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的最大值为2,周期为π,将函数y=f(x)图象向右平移$\frac{π}{12}$个单位得到函数y=g(x)的图象,若函数y=g(x)是偶函数,则函数f(x)的一条对称轴为(  )
A.x=-$\frac{π}{6}$B.x=$\frac{π}{12}$C.x=-$\frac{π}{12}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆O1:x2+y2=1与圆O2:(x+4)2+(y-a)2=25内切,则常数a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平面直角坐标系xOy中,角α的始边在x轴非负半轴,终边与单位圆交于点$A(\frac{3}{5},\frac{4}{5})$,将其终边绕O点逆时针旋转$\frac{3π}{4}$后与单位圆交于点B,则B的横坐标为(  )
A.$-\frac{{\sqrt{2}}}{10}$B.$-\frac{{7\sqrt{2}}}{10}$C.$-\frac{{3\sqrt{2}}}{4}$D.$-\frac{{4\sqrt{2}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,BA=2,AC=1,B1C=3
(1)证明:DE∥平面ABC;
(2)求圆柱OO1的体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A、B两点的坐标为(-1,0)、(1,0),点P到A、B两点的距离比是一个常数a(a>0),求点P的轨迹方程,并说明轨迹是什么图形.

查看答案和解析>>

同步练习册答案