分析 取AC的中点G,连结EG、FG,则EG∥AB,GF∥CD,且由AB=CD知EG=FG,从而得到∠GEF(或它的补角)为EF与AB所成的角,∠EGF(或它的补角)为AB与CD所成的角,由此能求出EF与AB所成的角.
解答 解:取AC的中点G,连结EG、FG,则EG∥AB,GF∥CD,![]()
且由AB=CD知EG=FG,
∴∠GEF(或它的补角)为EF与AB所成的角,
∠EGF(或它的补角)为AB与CD所成的角.(4分)
∵AB与CD所成的角为60°,∴∠EGF=60°或120°.
由EG=FG知△EFG为等腰三角形,
当∠EGF=60°时,∠GEF=60°;
当∠EGF=120°时,∠GEF=30°.
故EF与AB所成的角为60°或30°.(10分)
点评 本题考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8$\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | 4 | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com