精英家教网 > 高中数学 > 题目详情
2.空间四边形ABCD中,AB=CD且AB与CD所成的角为60°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.

分析 取AC的中点G,连结EG、FG,则EG∥AB,GF∥CD,且由AB=CD知EG=FG,从而得到∠GEF(或它的补角)为EF与AB所成的角,∠EGF(或它的补角)为AB与CD所成的角,由此能求出EF与AB所成的角.

解答 解:取AC的中点G,连结EG、FG,则EG∥AB,GF∥CD,
且由AB=CD知EG=FG,
∴∠GEF(或它的补角)为EF与AB所成的角,
∠EGF(或它的补角)为AB与CD所成的角.(4分)
∵AB与CD所成的角为60°,∴∠EGF=60°或120°.
由EG=FG知△EFG为等腰三角形,
当∠EGF=60°时,∠GEF=60°;
当∠EGF=120°时,∠GEF=30°.
故EF与AB所成的角为60°或30°.(10分)

点评 本题考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知loga2+loga3=2,则实数a=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=$\sqrt{5}$,AA1=a,M为线段BB1上的一动点,则当AM+MC1最小值为3$\sqrt{2}$,△AMC1的面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,水平放置的三棱柱的侧棱长和底边长均为4,且侧棱垂直于底面,正视图是边长为4的正方形,则三棱柱的左视图面积为(  )
A.8$\sqrt{3}$B.2$\sqrt{2}$C.$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知角α的终边上一点的坐标为(sin$\frac{π}{6}$,cos$\frac{π}{6}$),则角α的最小正值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上周期为2的奇函数,当x∈(0,1)时,f(x)=3x-1,则f(log35)=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.4D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=loga(1+x)-loga(1-x)的图象经过点(-$\frac{1}{2}$,-1).
(1)求实数a;
(2)判断函数f(x)的奇偶数,并写出f($\frac{1}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从(40,30),(50,10),(20,30),(45,5),(10,10)这5个点中任取一个点,这个点在圆x2+y2=2016内部的概率是(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案