精英家教网 > 高中数学 > 题目详情
15.从学校乘公共汽车去是图书馆,必须在市政府站转车,从学校到市政府站共有4种公共汽车可乘坐,从市政府站到图书馆有6种公共汽车4以乘坐,从学校到图书馆有多少种乘车方案?

分析 利用乘法原理,即可得出结论.

解答 解:∵从学校到市政府站共有4种公共汽车可乘坐,从市政府站到图书馆有6种公共汽车4以乘坐,
∴根据乘法原理,可得从学校到图书馆有4×6=24种乘车方案.

点评 本题考查乘法原理的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知双曲线的一个焦点为F1(5,0),它的渐近线方程为y=±$\frac{4}{3}$x,则该双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}=1$B.$\frac{y^2}{16}-\frac{x^2}{9}=1$C.$\frac{x^2}{9}-\frac{y^2}{16}=1$D.$\frac{y^2}{9}-\frac{x^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,某构件是由编号1、2、…、k(k∈N*且k≥3)的有限个圆柱自下而上组成的,其中每一个圆柱的高与其底面圆的直径相等,且对于任意两个相邻圆柱,上面圆柱的高是下面圆柱的高的一半,设编号1的圆柱的高为4.
(1)分别求编号1、编号2的圆柱的体积V1、V2
(2)写出编号n(n=1,2,…,k)的圆柱的体积Vn关于n的表达式(不必证明);
(3)求该构件的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.三棱锥A-BCD中,AB=CD=2$\sqrt{2}$,AC=BD=AD=2$\sqrt{3}$,且$\overrightarrow{DB}$$•\overrightarrow{DC}$=4,则三棱锥A-BCD外接球的体积为(  )
A.B.$\frac{32}{3}$πC.$\frac{16}{3}$πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题P(n)满足:①对任意的n∈N*,P(2n)是真命题;②假如P(n)(n∈N*,n>1)是真命题,则P(n-1)也是真命题.下列判断正确的是(  )
A.对任意n∈N*,P(n)是真命题
B.对任意n∈N*,仅有P(2n)是真命题
C.对任意n∈N*,仅有P(2n)和P(2n-1)是真命题
D.对任意n∈N*,P(n)不是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知五个男生和三个女生站成一排,若三个女生必须站在一起,则不同排法有4320种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.七个人排成一列做体操,其中:
(1)甲在中间的排法有多少种?
(2)甲在首位或末位的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某企业有员工1000名,为了丰富员工业余生活,企业开展了形式多样的文艺活动,跳广场舞就是其中一项,经调查研究,其中750名员工积极参加活动(称为A类),另外250名员工不积极参加(称为B类),现用分层抽样方法(按A类,B类分二层)从全体员工中共抽查100名.
(1)若该企业所抽查的100名员工对企业满意度得分的频率分布直方图如图所示,求这100名员工满意度得分的中位数(单位精确到0.01)
(2)如果以员工满意度得分为170作为达标的标准,对抽取的100名员工跳广场舞与否进行统计,得到以下2×2列联表:
满意度达标满意度不达标合    计
积极参加活动60
不积极参加活动10
合    计100
完成上表并判断能否有95%的把握认为跳广场舞与对企业满意度达标有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E、F分别在棱AA′,CC′上,且AE=C′F=2.
(1)求证:BB′⊥底面ABC;
(2)在棱A′B′上是否存在一点M,使得C′M∥平面BEF,若存在,求$\frac{{{A^/}M}}{{M{B^/}}}$值,若不存在,说明理由;
(3)求棱锥A′-BEF的体积.

查看答案和解析>>

同步练习册答案