精英家教网 > 高中数学 > 题目详情
6.过双曲线x2-$\frac{y^2}{15}$=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为(  )
A.10B.13C.16D.19

分析 求得两圆的圆心和半径,设双曲线x2-$\frac{{y}^{2}}{15}$=1的左右焦点为F1(-4,0),F2(4,0),连接PF1,PF2,F1M,F2N,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.

解答 解:圆C1:(x+4)2+y2=4的圆心为(-4,0),半径为r1=2;
圆C2:(x-4)2+y2=1的圆心为(4,0),半径为r2=1,
设双曲线x2-$\frac{{y}^{2}}{15}$=1的左右焦点为F1(-4,0),F2(4,0),
连接PF1,PF2,F1M,F2N,可得
|PM|2-|PN|2=(|PF1|2-r12)-(|PF2|2-r22
=(|PF1|2-4)-(|PF2|2-1)
=|PF1|2-|PF2|2-3=(|PF1|-|PF2|)(|PF1|+|PF2|)-3
=2a(|PF1|+|PF2|-3=2(|PF1|+|PF2|)-3≥2•2c-3=2•8-3=13.
当且仅当P为右顶点时,取得等号,
即最小值13.
故选B.

点评 本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.等差数列{an}的前n项和为Sn,且a4=16,a10=8,则S13为156.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线的斜率为2,过右焦点F作x轴的垂线交双曲线与A,B两点,△OAB(O为坐标原点)的面积为4$\sqrt{5}$,则F到一条渐近线的距离为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知倾斜角为$\frac{π}{3}$的直线与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)相交于A,B两点,M(4,2)是弦AB的中点,则双曲线C的离心率是(  )
A.$\frac{\sqrt{3}-1}{2}$B.$\sqrt{3}$C.2D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线y=x-2过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的焦点,则此双曲线C的渐近线方程为(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=$±\sqrt{3}$xC.y=±$\frac{1}{3}$xD.y=±$\frac{\sqrt{5}}{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点F1,F2为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若复数z=$\frac{1-2i}{3-i}$(i为虚数单位),则z的模为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F1、F2分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,过点F1的直线与双曲线C的左、右两支分别交于P、Q两点,|F1P|、|F2P|、|F1Q|成等差数列,且∠F1PF2=120°,则双曲线C的离心率是(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知底面为正三角形的三棱柱内接于半径为1的球,则三棱柱的体积的最大值为1.

查看答案和解析>>

同步练习册答案