精英家教网 > 高中数学 > 题目详情
17.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线的斜率为2,过右焦点F作x轴的垂线交双曲线与A,B两点,△OAB(O为坐标原点)的面积为4$\sqrt{5}$,则F到一条渐近线的距离为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.3

分析 根据渐近线的斜率得到b=2a,求出交点A,B的坐标,结合三角形的面积求出a,b,c,利用点到直线的距离公式进行求解即可.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线的斜率为2,
则y=$\frac{b}{a}$x=2x,即$\frac{b}{a}$=2,即b=2a,
当x=c时,$\frac{{c}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,即,$\frac{{c}^{2}}{{a}^{2}}$-1=$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}$=$\frac{{b}^{2}}{{a}^{2}}$,
即y2=$\frac{{b}^{4}}{{a}^{2}}$,得y=±$\frac{{b}^{2}}{a}$,即A(c,$\frac{{b}^{2}}{a}$),B(c,-$\frac{{b}^{2}}{a}$)
则,△OAB(O为坐标原点)的面积为4$\sqrt{5}$,
即S=$\frac{1}{2}$×c×$\frac{2{b}^{2}}{a}$=4$\sqrt{5}$,
即cb2=4$\sqrt{5}$a,
∵b=2a,
∴4ca2=4$\sqrt{5}$a,
则ac=$\sqrt{5}$,即a2c2=a2(a2+4a2)=5a4=5,则a=1,b=2,c=$\sqrt{5}$
则F(c,0)到一条渐近线y-2x=0的距离为d=$\frac{|-2c|}{\sqrt{5}}$=$\frac{2c}{\sqrt{5}}$=$\frac{2\sqrt{5}}{\sqrt{5}}$=2,
故选:B

点评 本题主要考查双曲线的性质,根据渐近线,和三角形的面积关系求出a,b,c.利用点到直线的距离公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,an=(-1)n•($\frac{1}{n}$+$\frac{1}{n+1}$),n∈N*,求数列{an}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程是y=$\frac{4}{3}$x,则该双曲线的离心率是(  )
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{7}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上的一点,F1,F2是焦点,PF1与渐近线平行,∠F1PF2=90°,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线x2-$\frac{{y}^{2}}{4}$=1的渐近线方程为(  )
A.y=±4xB.y=±2xC.y=±$\frac{1}{2}x$D.y=±$\frac{1}{4}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从重量分别为1,2,3,4,…,10,11克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为9克的方法总数为m,下列各式的展开式中x9的系数为m的选项是(  )
A.(1+x)(1+x2)(1+x3)…(1+x11
B.(1+x)(1+2x)(1+3x)…(1+11x)
C.(1+x)(1+2x2)(1+3x3)…(1+11x11
D.(1+x)(1+x+x2)(1+x+x2+x3)…(1+x+x2+…+x11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)与抛物线y2=8x交于两点A,B,且|AB|=8,则该双曲线的焦点到其渐近线的距离为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.4D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过双曲线x2-$\frac{y^2}{15}$=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为(  )
A.10B.13C.16D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在三棱柱ABC-A1BlC1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,AM=$\frac{2}{3}$AC.
(I)若三棱锥A1-C1ME的体积为$\frac{{\sqrt{2}}}{6}$,求AA1的长;
(Ⅱ)证明:CB1∥平面A1EM.

查看答案和解析>>

同步练习册答案