精英家教网 > 高中数学 > 题目详情
12.双曲线x2-$\frac{{y}^{2}}{4}$=1的渐近线方程为(  )
A.y=±4xB.y=±2xC.y=±$\frac{1}{2}x$D.y=±$\frac{1}{4}$x

分析 由双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),可得渐近线方程y=±$\frac{b}{a}$x,求得双曲线的a,b,即可得到所求渐近线方程.

解答 解:由双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
可得渐近线方程y=±$\frac{b}{a}$x,
双曲线x2-$\frac{{y}^{2}}{4}$=1的a=1,b=2,
可得渐近线方程为y=±2x.
故选:B.

点评 本题考查双曲线的渐近线方程的求法,注意运用双曲线的方程和渐近线方程的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.某市近10年的国内生产总值从1000亿元开始以8%的速度增长,则这个城市近10年的国内生产总值一共是(  )
A.12500(1.089-1)亿元B.12500(1.0810-1)亿元
C.12500(1-0.929)亿元D.12500(1-0.9210)亿元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线是y=±$\frac{4}{3}$x,则该双曲线的离心率$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左右焦点,以线段F1F2为直径的圆与双曲线的渐近线的一个交点为P,且P在第一象限内,若|PF2|=2$\sqrt{3}$a,则双曲线的离心率为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一个实轴端点与恰与抛物线y2=-4x的焦点重合,且双曲线的离心率等于2,则该双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-\frac{y^2}{1}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线的斜率为2,过右焦点F作x轴的垂线交双曲线与A,B两点,△OAB(O为坐标原点)的面积为4$\sqrt{5}$,则F到一条渐近线的距离为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{13}}{3}$,右焦点F,F在渐近线上的垂足为M,O为坐标原点,若$\overrightarrow{OF}$•$\overrightarrow{MF}$=4,则双曲线C的方程是$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线y=x-2过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的焦点,则此双曲线C的渐近线方程为(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=$±\sqrt{3}$xC.y=±$\frac{1}{3}$xD.y=±$\frac{\sqrt{5}}{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线为$y=\sqrt{3}x$,那么双曲线的离心率为2.

查看答案和解析>>

同步练习册答案