精英家教网 > 高中数学 > 题目详情
2.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线为$y=\sqrt{3}x$,那么双曲线的离心率为2.

分析 求出双曲线的一条渐近线方程,由题意可得b=$\sqrt{3}$a,由a,b,c的关系和离心率公式计算即可得到所求值.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{b}{a}$x,
由题意可得$\frac{b}{a}$=$\sqrt{3}$,
即为b=$\sqrt{3}$a,
c=$\sqrt{{a}^{2}+{b}^{2}}$=2a,
可得e=$\frac{c}{a}$=2.
故答案为:2.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.双曲线x2-$\frac{{y}^{2}}{4}$=1的渐近线方程为(  )
A.y=±4xB.y=±2xC.y=±$\frac{1}{2}x$D.y=±$\frac{1}{4}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法中正确的是(  )
A.“f(0)=0”是“函数f(x)是奇函数”的充要条件
B.“若$α=\frac{π}{6}$,则$sinα=\frac{1}{2}$”的否命题是“若$α≠\frac{π}{6}$,则$sinα≠\frac{1}{2}$
C.若$p:?{x_0}∈R,x_0^2-{x_0}-1>0$,则¬p:?x∈R,x2-x-1<0
D.若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数f(x)满足f(x-1)=f(1-x),且x≥0时,f(x)=2|x-m|-2,f(-1)=-1,则f(x)<0的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-2,2)C.(0,2)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线M:x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点分别为F1,F2,过点F1与双曲线的一条渐近线平行的直线与另一条渐近线交于点P,若点P在以原点为圆心,双曲线M的虚轴长为半径的圆内,则b2的取值范围是(  )
A.(7+4$\sqrt{3}$,+∞)B.(7-4$\sqrt{3}$,+∞)C.(7-4$\sqrt{3}$,7+4$\sqrt{3}$)D.(0,7-4$\sqrt{3}$)∪(7+4$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在三棱柱ABC-A1BlC1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,AM=$\frac{2}{3}$AC.
(I)若三棱锥A1-C1ME的体积为$\frac{{\sqrt{2}}}{6}$,求AA1的长;
(Ⅱ)证明:CB1∥平面A1EM.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若实数x,y满足条件:$\left\{{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}}\right.$,则$\sqrt{3}x+y$的最大值为(  )
A.0B.$\sqrt{3}$C.$2\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线C;$\frac{{y}^{2}}{{b}^{2}+8}$-$\frac{{x}^{2}}{{b}^{2}}$=1(b>0),点P是抛物线y2=12x上的一动点,且P到双曲线C的焦点F1(0,c)的距离与直线x=-3的距离之和的最小值为5,则双曲线C的实轴长为 (  )
A.2$\sqrt{3}$B.4C.8D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.知直线l:y=-(x+b)与抛物线y2=2x交于点A、B,且以AB为直径的圆与x轴相切,则b=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案