精英家教网 > 高中数学 > 题目详情
15.已知数列{an}是等差数列,Sn是其前n项和,且S12>0,S13<0,则使an<0成立的最小值n是7.

分析 S12>0,S13<0,可得$\frac{12({a}_{1}+{a}_{12})}{2}$>0,$\frac{13({a}_{1}+{a}_{13})}{2}$<0,因此a6+a7>0,a7<0,即可得出.

解答 解:∵S12>0,S13<0,
∴$\frac{12({a}_{1}+{a}_{12})}{2}$>0,$\frac{13({a}_{1}+{a}_{13})}{2}$<0,
∴a6+a7>0,a7<0,
∴a6>0.
则使an<0成立的最小值n是7.
故答案为:7.

点评 本题考查了等差数列的通项公式及其前n项和公式、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x+1)=x2,则函数f(x)的解析式为f(x)=(x-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆O:x2+y2=1,点C为直线l:2x+y-2=0上一点,若圆O存在一条弦AB垂直平分线段OC,则点C的横坐标的取值范围是(0,$\frac{8}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.化简cos(2π-θ)cos2θ+sinθsin(π+2θ)所得的结果是(  )
A.cosθB.-cosθC.cos3θD.-cos3θ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=lg(3-2x)的定义域为(-∞,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足${a_1}=\frac{1}{2}$,且当n≥2,且n∈N*时,有$\frac{{{a_{n-1}}}}{a_n}=\frac{{{a_{n-1}}+2}}{{2-{a_n}}}$,
(1)求证:数列$\left\{{\frac{1}{a_n}}\right\}$为等差数列;
(2)已知函数$f(n)={(\frac{9}{10})^n}({n∈{N_+}})$,试问数列$\left\{{\frac{f(n)}{a_n}}\right\}$是否存在最小项,如果存在,求出最小项;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式$\frac{ax}{x-1}<1$的解集为{x|x<b或x>3},那么a-b的值等于-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)过点P(0,1)作直线l使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,求直线l的方程.
(2)光线沿直线l1:x-2y+5=0射入,遇直线l:3x-2y+7=0后反射,求反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.己知两个等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意的n∈N*,都有 $\frac{S_n}{T_n}=\frac{2n-2}{4n-3}$,则$\frac{a_4}{{{b_5}+{b_7}}}+\frac{a_8}{{{b_3}+{b_9}}}$的值为$\frac{20}{41}$.

查看答案和解析>>

同步练习册答案