分析 S12>0,S13<0,可得$\frac{12({a}_{1}+{a}_{12})}{2}$>0,$\frac{13({a}_{1}+{a}_{13})}{2}$<0,因此a6+a7>0,a7<0,即可得出.
解答 解:∵S12>0,S13<0,
∴$\frac{12({a}_{1}+{a}_{12})}{2}$>0,$\frac{13({a}_{1}+{a}_{13})}{2}$<0,
∴a6+a7>0,a7<0,
∴a6>0.
则使an<0成立的最小值n是7.
故答案为:7.
点评 本题考查了等差数列的通项公式及其前n项和公式、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com