精英家教网 > 高中数学 > 题目详情
20.如图,棱柱ABCD-A1B1C1D1的底面是菱形.侧棱长为5,平面ABCD⊥平面A1ACC1,AB=3$\sqrt{3}$,∠BAD=60°,点E是△ABD的重心,且A1E=4.
(1)求证:平面A1DC1∥平面AB1C;
(2)求二面角B1-AC-B的余弦值.

分析 (1)推导出四边形A1ACC1是平行四边形,从而A1C1∥AC.进而四边形ADC1B1是平行四边形,从而AB1∥DC1,进而AC∥平面A1DC1,AB1∥平面A1DC1,由此能证明平面A1DC1∥平面AB1C.
(2)设AC∩BD=O,推导出A1E⊥AC,从而A1E⊥平面ABCD.以E为原点,分别以AC,A1E所在直线为x,z轴,以过点E与BD平行的直线为y轴建立空间直角坐标系,利用向量法能求出二面角B1-AC-B的余弦值.

解答 证明:(1)因为AA1平行等于CC1,所以四边形A1ACC1是平行四边形,所以A1C1∥AC.
又因为AD平行等于B1C1,所以四边形ADC1B1是平行四边形,所以AB1∥DC1
因为AC,AB1?平面A1DC1,A1C1,DC1⊆平面A1DC1
所以AC∥平面A1DC1,AB1∥平面A1DC1,又因为AC∩AB1=A,AC,AB1⊆平面AB1C,
所以平面A1DC1∥平面AB1C.
解:(2)设AC∩BD=O,由题意可知△ABD是等边三角形.
因为$AB=3\sqrt{3}$,所以$OA=ABcos∠BAC=3\sqrt{3}cos{30°}=\frac{9}{2}$,
所以$AE=\frac{2}{3}OA=3$,所以$AA_1^2={A_1}{E^2}+A{E^2}$,所以A1E⊥AC,
又因为平面ABCD⊥平面A1ACC1,平面ABCD∩平面A1ACC1=AC,A1E⊆平面A1ACC1,所以A1E⊥平面ABCD.
以E为原点,分别以AC,A1E所在直线为x,z轴,以过点E与BD平行的直线为y轴建立空间直角坐标系,
则$E(0,0,0),{A_1}(0,0,4),A(-3,0,0),B(\frac{3}{2},-\frac{{3\sqrt{3}}}{2},0),C(6,0,0)$.设B1(x1,y1,z1).
因为$\overrightarrow{A{A_1}}=(3,0,4)$,$\overrightarrow{B{B_1}}=({x_1}-\frac{3}{2},{y_1}+\frac{{3\sqrt{3}}}{2},{z_1})$,$\overrightarrow{A{A_1}}=\overrightarrow{B{B_1}}$,所以$\overrightarrow{B{B_1}}=(\frac{9}{2},-\frac{{3\sqrt{3}}}{2},4)$.
由A1E⊥平面ABCD,可知平面ABCD的法向量是$\overrightarrow{E{A_1}}=(0,0,4)$.
设平面B1AC的法向量是$\overrightarrow n=(x,y,z)$,而$\overrightarrow{AC}=(9,0,0)$,$\overrightarrow{A{B_1}}=(\frac{15}{2},-\frac{{3\sqrt{3}}}{2},4)$.
由$\left\{{\begin{array}{l}{\overrightarrow n•\overrightarrow{AC}=9x=0}\\{\overrightarrow n•\overrightarrow{A{B_1}}=\frac{15}{2}x-\frac{{3\sqrt{3}}}{2}y+4z=0}\end{array}}\right.$,所以$x=0,z=\frac{{3\sqrt{3}}}{8}y$.
所以$\overrightarrow n=(0,y,\frac{{3\sqrt{3}}}{8}y)=\frac{1}{8}y(0,8,3\sqrt{3})$.
取平面B1AC的法向量$\overrightarrow n=(0,8,3\sqrt{3})$,所以$cos<\overrightarrow{E{A_1}},\overrightarrow n>=\frac{{\overrightarrow{E{A_1}}•\overrightarrow n}}{{|{\overrightarrow{E{A_1}}}||{\overrightarrow n}|}}=\frac{{3\sqrt{273}}}{91}$.
故二面角B1-AC-B的余弦值为$\frac{3\sqrt{273}}{91}$.

点评 本题考查面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,直线l过点P(2,6),且倾斜角为$\frac{3}{4}π$,在极坐标系(与平面直角坐标系xOy取相同的长度,以原点O为极点,x轴的非负半轴为极轴)中,曲线C的极坐标方程为$ρ=20sin(\frac{π}{4}-\frac{θ}{2})cos(\frac{π}{4}-\frac{θ}{2})$.
(1)求直线l的参数方程与曲线C的直角坐标方程;
(2)设曲线C与直线l交于点A,B,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个空间几何体的三视图如图所示,则这个几何体的表面积为(  )
A.$\frac{{9\sqrt{3}}}{4}$B.$9\sqrt{3}$C.$\frac{{9\sqrt{2}}}{4}$D.$9\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:填空题

在映射中,如果,那么称的像.设使,则中所有元素的像构成的集合是______.(用列举法表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=$\frac{π}{3}$.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)求点B到平面AB1C1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的参数方程为:$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),曲线C的极坐标方程为:ρ=4cosθ.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数g(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数y=g(x)的图象在x=$\frac{1}{e}$处的切线方程;
(Ⅱ)令f(x)=ax2+bx-x•(g(x))(a,b∈R).
①若a≥0,求f(x)的单调区间;
②设a>0,且对任意x>0,f(x)≥f(1).试比较lna与-2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ex,g(x)=lnx.
(1)若f($\frac{1}{e}$x)-ax≥0恒成立(a≥0),求a的取值范围;
(2)求证:f($\frac{1}{e}$x)-g(x-e)>1.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

已知函数的定义域为,值域为,那么满足条件的整数对共有( )

A.6个 B.7个

C.8个 D.9个

查看答案和解析>>

同步练习册答案