13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßl¹ýµãP£¨2£¬6£©£¬ÇÒÇãб½ÇΪ$\frac{3}{4}¦Ð$£¬ÔÚ¼«×ø±êϵ£¨ÓëÆ½ÃæÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶È£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖᣩÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=20sin£¨\frac{¦Ð}{4}-\frac{¦È}{2}£©cos£¨\frac{¦Ð}{4}-\frac{¦È}{2}£©$£®
£¨1£©ÇóÖ±ÏßlµÄ²ÎÊý·½³ÌÓëÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÇúÏßCÓëÖ±Ïßl½»ÓÚµãA£¬B£¬Çó|PA|+|PB|£®

·ÖÎö £¨1£©¸ù¾ÝÖ±Ïßl¹ýµãP£¨2£¬6£©£¬ÇÒÇãб½ÇΪ$\frac{3¦Ð}{4}$£¬¿ÉµÃÖ±ÏßlµÄ²ÎÊý·½³Ì£®ÓÉ$¦Ñ=20sin£¨\frac{¦Ð}{4}-\frac{¦È}{2}£©cos£¨\frac{¦Ð}{4}-\frac{¦È}{2}£©$µÃ¦Ñ=10cos¦È£¬¼´¦Ñ2=10¦Ñcos¦È£®lÀûÓû¥»¯¹«Ê½¼´¿ÉµÃ³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ${t^2}+9\sqrt{2}t+20=0$£¬¡÷£¾0£¬ÀûÓÃ|PA|+|PB|=|t1+t2|¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ßÖ±Ïßl¹ýµãP£¨2£¬6£©£¬ÇÒÇãб½ÇΪ$\frac{3¦Ð}{4}$£¬
¡àÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2-\frac{{\sqrt{2}}}{2}t}\\{y=6+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬
ÓÉ$¦Ñ=20sin£¨\frac{¦Ð}{4}-\frac{¦È}{2}£©cos£¨\frac{¦Ð}{4}-\frac{¦È}{2}£©$µÃ¦Ñ=10cos¦È£¬¼´¦Ñ2=10¦Ñcos¦È£®
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-10x=0£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬
µÃ${£¨-3-\frac{{\sqrt{2}}}{2}t£©^2}+{£¨6+\frac{{\sqrt{2}}}{2}t£©^2}=25$£¬${t^2}+9\sqrt{2}t+20=0$£¬¡÷=82£¾0£¬
¿ÉÉèÊÇt1£¬t2ÉÏÊö·½³ÌµÃÁ½¸öʵ¸ù£¬ÔòÓÐ$\left\{{\begin{array}{l}{{t_1}+{t_2}=-9\sqrt{2}}\\{{t_1}{t_2}=20}\end{array}}\right.$£¬
ÓÖÖ±Ïßl¹ýµãP£¨2£¬6£©£¬ËùÒÔ$|{PA}|+|{PB}|=|{t_1}|+|{t_2}|=|{{t_1}+{t_2}}|=9\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±Ïß²ÎÊý·½³ÌµÄÓ¦Óᢼ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄê°²»ÕÁù°²Ò»ÖиßÒ»ÉϹúÇì×÷Òµ¶þÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

É裬£¬£¬£¬.

£¨1£©Çó£»

£¨2£©É裬ÇÒÖÐÓÐÇÒ½öÓÐ2¸öÔªËØÊôÓÚ£¬ÇóµÄȡֵ·¶Î§.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊDZ߳¤Îª10µÄÕý·½ÐΣ¬ÈôPD¡ÍÆ½ÃæABCD£¬PD=AB£®
£¨I£©ÇóÖ¤£ºAC¡ÍPB£®
£¨¢ò£©Çó¶þÃæ½ÇA-PB-DµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬µãDÊÇBCµÄÖе㣬AB¡ÍAC£¬AB=AC=AA1=2£®
£¨1£©ÇóÖ¤£ºA1B¡ÎÆ½ÃæADC1£»
£¨2£©Çó¶þÃæ½ÇB1-AD-C1µÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬º¯Êýf£¨x£©µÄͼÏóÔÚPµã´¦µÄÇÐÏß·½³ÌÊÇy=-2x+17£¬ÈôµãPµÄºá×ø±êÊÇ5£¬Ôòf£¨5£©+f¡ä£¨5£©=£¨¡¡¡¡£©
A£®5B£®-5C£®10D£®-10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=a-|x-1|-|x+1|£®
£¨¢ñ£©µ±a=6ʱ£¬Çó²»µÈʽf£¨x£©£¾3µÄ½â¼¯£»
£¨¢ò£©Èô¶þ´Îº¯Êýy=x2+2x+3Ó뺯Êýy=f£¨x£©µÄͼÏóºãÓй«¹²µã£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÈçͼËùʾ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬ÒÑÖªCA¡ÍCB£¬CA=CB=1£¬AA1=2£¬ÇÒÀâAA1ºÍA1B1µÄÖеã·Ö±ðÊÇM£¬N£®
£¨1£©ÇóBMµÄ³¤£»
£¨2£©ÇóÖ±ÏßA1BºÍÖ±ÏßB1C¼Ð½ÇµÄÓàÏÒÖµ£»
£¨3£©ÇóÖ¤£ºÖ±ÏßA1B¡ÍÖ±ÏßC1N£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÉèO¡¢F·Ö±ðÊÇÅ×ÎïÏßy2=2xµÄ¶¥µãºÍ½¹µã£¬MÊÇÅ×ÎïÏßÉϵ͝µã£¬Ôò$\frac{|MO|}{|MF|}$µÄ×î´óֵΪ$\frac{2\sqrt{3}}{3}$£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÀâÖùABCD-A1B1C1D1µÄµ×ÃæÊÇÁâÐΣ®²àÀⳤΪ5£¬Æ½ÃæABCD¡ÍÆ½ÃæA1ACC1£¬AB=3$\sqrt{3}$£¬¡ÏBAD=60¡ã£¬µãEÊÇ¡÷ABDµÄÖØÐÄ£¬ÇÒA1E=4£®
£¨1£©ÇóÖ¤£ºÆ½ÃæA1DC1¡ÎÆ½ÃæAB1C£»
£¨2£©Çó¶þÃæ½ÇB1-AC-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸