精英家教网 > 高中数学 > 题目详情
15.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=$\frac{π}{3}$.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)求点B到平面AB1C1的距离.

分析 (Ⅰ)由已知条件推导出AB⊥BC1,BC⊥BC1,由此能证明C1B⊥平面ABC.
(Ⅱ)利用等体积方法求点B到平面AB1C1的距离.

解答 (Ⅰ)证明:AB⊥侧面BB1C1C,BC1?侧面BB1C1C,∴AB⊥BC1
在△BCC1中,BC=1,CC1=BB1=2,∠BCC1=$\frac{π}{3}$,
由余弦定理得:BC12=BC2+CC12-2BC•CC1•cos∠BCC1
=12+22-2×1×2×cos $\frac{π}{3}$=3,
∴BC1=$\sqrt{3}$,…3 分
∴BC2+BC12=CC12,∴BC⊥BC1
∵BC∩AB=B,∴C1B⊥平面ABC.…(5分)
(Ⅱ)解:${V}_{A-{B}_{1}B{C}_{1}}$=$\frac{1}{3}×\frac{1}{2}×B{C}_{1}×{B}_{1}{C}_{1}×AB$=$\frac{\sqrt{3}}{6}$.
又AB1=$\sqrt{A{B}^{2}+B{{B}_{1}}^{2}}$=$\sqrt{5}$,AC1=$\sqrt{A{B}^{2}+B{{C}_{1}}^{2}}$=2,B1C1=1
∴${S}_{△A{B}_{1}{C}_{1}}$=$\frac{1}{2}×2×1$=1.
设点B到平面AB1C1的距离为h
∴$\frac{1}{3}×1×h=\frac{\sqrt{3}}{6}$,∴h=$\frac{\sqrt{3}}{2}$
所以点B到平面AB1C1的距离为$\frac{\sqrt{3}}{2}$.

点评 本题考查线面垂直的证明,考查点到平面的距离的求法,正确运用等体积转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,函数f(x)的图象在P点处的切线方程是y=-2x+17,若点P的横坐标是5,则f(5)+f′(5)=(  )
A.5B.-5C.10D.-10

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:填空题

已知函数,则的解析式是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,其左焦点到点P(2,1)的距离为$\sqrt{10}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在过(0,-2)的直线l与椭圆C相交于A,B两点,且以AB为直径的圆过椭圆C的右顶点,若存在,求出直线l的方程,不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=f′(x)-3,则4f(x)>f′(x)(  )
A.($\frac{ln4}{3}$,+∞)B.($\frac{ln2}{3}$,+∞)C.($\frac{\sqrt{3}}{2}$,+∞)D.($\frac{\sqrt{e}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,棱柱ABCD-A1B1C1D1的底面是菱形.侧棱长为5,平面ABCD⊥平面A1ACC1,AB=3$\sqrt{3}$,∠BAD=60°,点E是△ABD的重心,且A1E=4.
(1)求证:平面A1DC1∥平面AB1C;
(2)求二面角B1-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在(-1,1)上的函数f(x)=1+x-$\frac{x^2}{2}+\frac{x^3}{3}-…-\frac{{{x^{2016}}}}{2016}$,设F(x)=f(x+4),且F(x)的零点均在区间(a,b)内,其中a,b∈z,a<b,则圆x2+y2=b-a的面积的最小值为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AD}$|=$\sqrt{3}$,若将其沿BD折成直二面角A-BD-C,则三棱锥A-BDC的外接球的表面积为(  )
A.16πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算:3${\;}^{lo{g}_{9}64}$=8.

查看答案和解析>>

同步练习册答案