精英家教网 > 高中数学 > 题目详情
7.定义在(-1,1)上的函数f(x)=1+x-$\frac{x^2}{2}+\frac{x^3}{3}-…-\frac{{{x^{2016}}}}{2016}$,设F(x)=f(x+4),且F(x)的零点均在区间(a,b)内,其中a,b∈z,a<b,则圆x2+y2=b-a的面积的最小值为(  )
A.πB.C.D.

分析 求出函数的导数,判断函数的单调性,利用函数零点的判断定理判断函数的零点,利用函数的周期关系判断,函数F(x)的零点,求出a,b的关系,即可得到结论.

解答 解:由函数$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…-\frac{{{x^{2016}}}}{2016}$的导数为
f′(x)=1-x+x2-x3+…-x2015=$\frac{1-(-x)^{2016}}{1+x}$,
∵-1<x<1,∴1+x>0,0≤x2016<1,则1-x2016>0,
∴f′(x)=$\frac{1-(-x)^{2016}}{1+x}$=$\frac{1-{x}^{2016}}{1+x}$>0,可得f(x)在(-1,1)上递增,
∵f(-1)=(1-1)+(-$\frac{1}{2}$-$\frac{1}{3}$-…-$\frac{1}{2015}$-$\frac{1}{2016}$<0,f(0)=1>0
∴函数f(x)在(-1,1)上有唯一零点x0∈(-1,0)
∵F(x)=f(x+4),得函数F(x)的零点是x0-4∈(-5,-4),
∵F(x)的零点均在区间(a,b)内,
∴a≤-5且b≥-4,得b-a的最小值为-4-(-5)=1
∵圆x2+y2=b-a的圆心为原点,半径r=$\sqrt{b-a}$
∴圆x2+y2=b-a的面积的最小值是π.
故选:A

点评 本题主要考查函数零点的判断和应用,求出函数的导数,判断函数的单调性,以及利用函数零点的性质判断函数的零点所在的区间是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.数列{an}满足a1=1,${a_{n+1}}=3{a_n}+{2^n}$.
(Ⅰ)求证数列$\left\{{{a_n}+{2^n}}\right\}$是等比数列;
(Ⅱ)证明:对一切正整数n,有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=cosωx+$\sqrt{3}$cosωx(ω>0),如果存在实数x0,使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2016π)成立,则ω的最小值为(  )
A.$\frac{1}{4032π}$B.$\frac{1}{2016π}$C.$\frac{1}{4032}$D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=$\frac{π}{3}$.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)求点B到平面AB1C1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,其则该几何体的体积是(  )
A.$2+\frac{{\sqrt{3}}}{3}π$B.$4+\sqrt{3}π$C.$\frac{4}{3}+\frac{{\sqrt{3}}}{3}π$D.$4+\frac{{\sqrt{3}}}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数g(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数y=g(x)的图象在x=$\frac{1}{e}$处的切线方程;
(Ⅱ)令f(x)=ax2+bx-x•(g(x))(a,b∈R).
①若a≥0,求f(x)的单调区间;
②设a>0,且对任意x>0,f(x)≥f(1).试比较lna与-2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,a+b=2.
(1)求$\frac{1}{a}$+$\frac{4}{b}$的最小值;
(2)求证:$\frac{ab(\sqrt{a}+\sqrt{b})}{a+b}$≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知边长为$2\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿对角线BD折成二面角为120°的四面体,则四面体的外接球的表面积为28π.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

若函数的定义域是,则函数的定义域是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案