精英家教网 > 高中数学 > 题目详情
19.已知a>0,b>0,a+b=2.
(1)求$\frac{1}{a}$+$\frac{4}{b}$的最小值;
(2)求证:$\frac{ab(\sqrt{a}+\sqrt{b})}{a+b}$≤1.

分析 (1)分式类型,巧运用a+b的式子即可;
(2)利用基本不等式转化为$\frac{ab(\sqrt{a}+\sqrt{b})}{a+b}$=ab•$\frac{\sqrt{a}+\sqrt{b}}{2}$$≤\sqrt{\frac{a+b}{2}}$•($\frac{a+b}{2}$)2求解即可.

解答 解:(1)a+b=2.
∴$\frac{1}{a}$+$\frac{4}{b}$=$\frac{1}{2}$($\frac{a+b}{a}$+$\frac{4(a+b)}{b}$)=$\frac{1}{2}×$(5+$\frac{b}{a}$$+\frac{4a}{b}$)≥$\frac{9}{2}$仅当(b=2a等号成立);
(2)证明:$\frac{ab(\sqrt{a}+\sqrt{b})}{a+b}$=ab•$\frac{\sqrt{a}+\sqrt{b}}{2}$$≤\sqrt{\frac{a+b}{2}}$•($\frac{a+b}{2}$)2=1.(当且仅当a=b等号成立).

点评 本题考查了基本不等式的运用,恒等变形的能力,属于容易题,关键看准条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.哈六中数学组推出微信订阅号(公众号hl15645101785)后,受到家长和学生们的关注,为了更好的为学生和家长提供帮助,我们在某时间段在线调查了60位更关注栏目1或栏目2(2选一)的群体身份样本得到如下列联表,已知在样本中关注栏目1与关注栏目2的人数比为2:1,在关注栏目1中的家长与学生人数比为5:3,在关注栏目2中的家长与学生人数比为1:3
栏目1栏目2合计
家长
学生
合计
(1)完成列联表,并根据列联表的数据,若按99%的可靠性要求,能否认为“更关注栏目1或栏目2与群体身份有关系”;
(2)如果把样本频率视为概率,随机回访两位关注者,更关注栏目1的人数记为随机变量X,求X的分布列和期望;
(3)由调查样本对两个栏目的关注度,请你为数学组教师提供建议应该更侧重充实哪个栏目的内容,并简要说明理由.
P(K2≥x00.100.050.0250.010.0050.001
x02.7063.8415.0246.6357.87910.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=f′(x)-3,则4f(x)>f′(x)(  )
A.($\frac{ln4}{3}$,+∞)B.($\frac{ln2}{3}$,+∞)C.($\frac{\sqrt{3}}{2}$,+∞)D.($\frac{\sqrt{e}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在(-1,1)上的函数f(x)=1+x-$\frac{x^2}{2}+\frac{x^3}{3}-…-\frac{{{x^{2016}}}}{2016}$,设F(x)=f(x+4),且F(x)的零点均在区间(a,b)内,其中a,b∈z,a<b,则圆x2+y2=b-a的面积的最小值为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x}-\frac{a}{3},x≤0}\\{lnx-2x+a,x>0}\end{array}}$有三个不同的零点,则实数a的取值范围是(  )
A.(1+ln2,3]B.(ln2,3]C.(0,1+ln2)D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AD}$|=$\sqrt{3}$,若将其沿BD折成直二面角A-BD-C,则三棱锥A-BDC的外接球的表面积为(  )
A.16πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知A(0,1)和直线l:x=-5,抛物线y2=4x上动点P到l的距离为d,则|PA|+d的最小值是(  )
A.6B.$5+\sqrt{2}$C.$4+\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=4t\\ y=3t-1\end{array}$(t为参数),当t=0时,曲线C1上对应的点为 P.以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=$\frac{8cosθ}{1-cos2θ}$.
(I)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)设曲线C1与C2的公共点为A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}首项为2,公差为2,等比数列{bn}首项为1,公比为2.
(1)求{an}、{bn}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

同步练习册答案