精英家教网 > 高中数学 > 题目详情
11.已知A(0,1)和直线l:x=-5,抛物线y2=4x上动点P到l的距离为d,则|PA|+d的最小值是(  )
A.6B.$5+\sqrt{2}$C.$4+\sqrt{2}$D.$4\sqrt{2}$

分析 先求出抛物线的准线方程为直线x=-1,再根据抛物线的基本性质可得当焦点、P点、A点共线时距离最小,从而得到答案.

解答 解:抛物线准线为x=-1,P到其距离为d1,则d=d1+4,
所以$|{PA}|+d=4+{d_1}+|{PA}|=4+|{PF}|+|{PA}|≥4+|{FA}|=4+\sqrt{2}$.
故选C.

点评 考查圆锥曲线的定义及数形结合,化归转化的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知三棱锥A-BCD中,平面ABD⊥平面BCD,BC⊥CD,BC=CD=4,AB=AD=$2\sqrt{3}$,则三棱锥A-BCD的外接球的大圆面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,其则该几何体的体积是(  )
A.$2+\frac{{\sqrt{3}}}{3}π$B.$4+\sqrt{3}π$C.$\frac{4}{3}+\frac{{\sqrt{3}}}{3}π$D.$4+\frac{{\sqrt{3}}}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,a+b=2.
(1)求$\frac{1}{a}$+$\frac{4}{b}$的最小值;
(2)求证:$\frac{ab(\sqrt{a}+\sqrt{b})}{a+b}$≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设一动圆过点F2(1,0),且与定圆F1:(x+1)2+y2=16相切.
(Ⅰ)求动圆圆心C的轨迹方程;
(Ⅱ)设过点F2的直线l与动圆圆心轨迹交于M,N两点,是否存在直线l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,若存在请求出直线l的方程,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知边长为$2\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿对角线BD折成二面角为120°的四面体,则四面体的外接球的表面积为28π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某单位拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).
(1)求θ关于x的函数关系式;
(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用之比为y,求y关于x的函数关系式,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设y3+3x2y+x=1确定y是x的函数,求y′及y′|x=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知中心在原点,焦点在x轴上的椭圆C的离心率为$\frac{1}{2}$,其一个顶点为抛物线x2=-4$\sqrt{3}$y的焦点.
(1)求椭圆C的标准方程;
(2)若过点P(2,1)的直线l与椭圆C在第一象限相切于点M,求直线l的方程和点M的坐标;
(3)是否存在过点P(2,1)的直线l1与椭圆C相交于不同的两点A,B,且满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=${\overrightarrow{PM}^2}$?若存在,求出直线l1的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案