精英家教网 > 高中数学 > 题目详情
4.在平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AD}$|=$\sqrt{3}$,若将其沿BD折成直二面角A-BD-C,则三棱锥A-BDC的外接球的表面积为(  )
A.16πB.C.D.

分析 折叠之后呢得出三棱锥A-BDC的外接球与长方体的外接球相同,利用对角线求解即可,再利用面积公式求解即可.

解答 解:在平行四边形ABCD中,AB⊥BD,|$\overrightarrow{AB}$|=1,
|$\overrightarrow{AD}$|=$\sqrt{3}$,若将其沿BD折成直二面角A-BD-C,
∴三棱锥A-BDC镶嵌在长方体中,
即得出:三棱锥A-BDC的外接球与长方体的外接球相同,
∴2R=$\sqrt{3+1}$=2,R=1,
∴外接球的表面积为4π×12=4π,
故选:C.

点评 本题考察了空间几何体的性质,空间思维能力的运用,镶嵌几何体的求解方法,转为常见的几何体求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{|lgx|,x>0}\end{array}\right.$,则函数g(x)=f(1-x)-1的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=$\frac{π}{3}$.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)求点B到平面AB1C1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数g(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数y=g(x)的图象在x=$\frac{1}{e}$处的切线方程;
(Ⅱ)令f(x)=ax2+bx-x•(g(x))(a,b∈R).
①若a≥0,求f(x)的单调区间;
②设a>0,且对任意x>0,f(x)≥f(1).试比较lna与-2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,a+b=2.
(1)求$\frac{1}{a}$+$\frac{4}{b}$的最小值;
(2)求证:$\frac{ab(\sqrt{a}+\sqrt{b})}{a+b}$≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ex,g(x)=lnx.
(1)若f($\frac{1}{e}$x)-ax≥0恒成立(a≥0),求a的取值范围;
(2)求证:f($\frac{1}{e}$x)-g(x-e)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知边长为$2\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿对角线BD折成二面角为120°的四面体,则四面体的外接球的表面积为28π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|2x+1|+|2x-3|.
(1)求不等式f(x)>6的解集A;
(2)若关于x的表达式f(x)>|a-1|的解集B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的三个顶点的坐标为A(-1,0)、B(4,0)、C(0,c).
(1)若$\overrightarrow{AC}$⊥$\overrightarrow{BC}$,求c的值;
(2)当c满足(1)问题的结论时,求△ABC的重心坐标G(x,y).

查看答案和解析>>

同步练习册答案