精英家教网 > 高中数学 > 题目详情
已知数列{an}满足
u
=(an+1,n+1),
v
=(an,n)且
u
-
v
=λ(2,1)
(1)证明:数列{an}为等差数列;
(2)若数列{an}的首项a1为奇数,前n项和为Sn,若Sn最小值为-16,求a1
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知得
an+1-an=2λ
n+1-n=λ
,所以an+1-a=2,由此能证明数列{an}为等差数列.
(2)由已知条件得Sn=na1+
n(n-1)
2
×2
=(n-
a1-1
2
2-
(a1-1)2
4
,所以
(a1-1)2
4
=16,由此能求出a1
解答: (1)证明:∵数列{an}满足
u
=(an+1,n+1),
v
=(an,n)且
u
-
v
=λ(2,1),
an+1-an=2λ
n+1-n=λ
,∴an+1-a=2,
∴数列{an}为等差数列.
(2)解:数列{an}的首项a1为奇数,前n项和为Sn,Sn最小值为-16,
∴Sn=na1+
n(n-1)
2
×2

=n2+(a1-1)n
=(n-
a1-1
2
2-
(a1-1)2
4

(a1-1)2
4
=16,
解得a1=9,或a1=-7.
点评:本题考查等差数列的证明,考查数列的首项的求法,解题时要认真审题,注意配方法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数f(x)=log
1
2
3-2x-x2
的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的方程:x2+ax+
1
4
(a2+3)=x2+x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的中心在坐标原点、对称轴为坐标轴,且抛物线x2=-4
2
y的焦点是它的一个焦点,又点A(1,
2
)在该椭圆上.
(1)求椭圆E的方程;
(2)若斜率为
2
直线l与椭圆E交于不同的两点B、C,当△ABC的面积为
2
时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的二次项的系数为a,不等式f(x)>-2x的解集为(1,3)
(Ⅰ)若函数y=f(x)+6a有且只有一个零点,求f(x)的解析式;
(Ⅱ)记f(x)的最大值为g(a),求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1在直角梯形ABCD中,AB∥CD,AB⊥AD且AB=AD=
1
2
CD=1,现以AD为一边向梯形外作正方形ADEF,然后沿AD将正方形翻折,使平面ADEF与平面ABCD互相垂直如图2.

(1)求证:平面BDE⊥平面BEC;
(2)求直线BD与平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下表是某厂1~4月份用水量(单位:百吨)的一组数据:
月份x1234
用水量y4.5432.5
由其散点图可知,用水量y与月份x之间有较好的线性相关关系,计算得线性回归方程是y=5.25-0.7x,则预测五月份用水量为
 
百吨.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在30°的二面角α-l-β的棱上有两点A,B,点C,D分别在α,β内,且AC⊥AB,BD⊥AB,AC=BD=AB=1,则CD的长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果某年年份的各位数字之和为7,我们称该年为“七巧年”.例如,今年年份2014的各位数字之和为7,所以今年恰为“七巧年”,那么从2000年到2999年中“七巧年”共有
 
个.

查看答案和解析>>

同步练习册答案