精英家教网 > 高中数学 > 题目详情
20.已知0<A<$\frac{π}{2}$,且cosA=$\frac{2}{3}$,那么sin2A等于(  )
A.$\frac{1}{9}$B.$\frac{7}{9}$C.$\frac{8}{9}$D.$\frac{{4\sqrt{5}}}{9}$

分析 由题意根据同角三角函数关系式可求sinA,由二倍角公式即可得解.

解答 解:∵0<A<$\frac{π}{2}$,且cosA=$\frac{2}{3}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\sqrt{1-\frac{4}{9}}$=$\frac{\sqrt{5}}{3}$,
∴sin2A=2sinAcosA=2×$\frac{\sqrt{5}}{3}×\frac{2}{3}$=$\frac{4\sqrt{5}}{9}$.
故选:D.

点评 本题主要考查了同角三角函数关系式的应用,考查了二倍角的正弦函数公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)的定义域为[-1,5],部分对应值如表,
x-10245
f(x)12021
f(x)的导函数y=f′(x)的图象如图所示.当1<a<2时,函数
y=f(x)-a的零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数 f(x)=2015x2+lnx-x的极值点的个数是(  )
A.0B.1C.2D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左右焦点分别为F1,F2,过右焦点F2作x轴的垂线,交椭圆于A,B两点.若等边△ABF1的周长为$4\sqrt{3}$,则椭圆的方程为(  )
A.$\frac{x^2}{3}+\frac{y^2}{2}=1$B.$\frac{x^2}{3}+\frac{y^2}{6}=1$C.$\frac{x^2}{2}+\frac{y^2}{3}=1$D.$\frac{x^2}{9}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若∠B=2∠A,且a:b=1:$\sqrt{3}$,则cos2B的值是(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)是定义在R上的偶函数,在区间(-∞,0)上是减函数,则使f(lnx)<f(1)的x的取值范围为($\frac{1}{e}$,e).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求cos$\frac{8π}{3}$-tan$\frac{17π}{4}$+2sin(-$\frac{13π}{3}$)+tan(-$\frac{11π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=sin2x+cos2x的值域是(  )
A.[-1,1]B.[-2,2]C.[-1,$\sqrt{2}$]D.[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某学校要建造一个面积为10000平方米的运动场.如图,运动场是由一个矩形ABCD和分别以AD、BC为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.
(1)设半圆的半径OA=r(米),试建立塑胶跑道面积S与r的函数关系S(r),并求其定义域;
(2)由于条件限制r∈[30,40],问当r取何值时,运动场造价最低?

查看答案和解析>>

同步练习册答案