精英家教网 > 高中数学 > 题目详情
4.已知集合A=x|x2-2x-3>0},集合B={x|0<x<4},则(∁RA)∩B=(  )
A.(0,3]B.[-1,0)C.[-1,3]D.(3,4)

分析 化简集合A,根据补集与交集的定义进行计算即可.

解答 解:集合A=x|x2-2x-3>0}={x|x<-1或x>3},
集合B={x|0<x<4},
∴∁RA={x|-1≤x≤3},
∴(∁RA)∩B={x|0<x≤3}=(0,3].
故选:A.

点评 本题考查了集合的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是甲.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知在△ABC内有一点P,满足$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,过点P作直线l分别交AB、AC于M、N,若$\overrightarrow{AM}$=m$\overrightarrow{AB}$,$\overrightarrow{AN}$=n$\overrightarrow{AC}$(m>0,n>0),则m+n的最小值为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{x^2}{48}$+$\frac{y^2}{36}$=1,F1,F2是左、右焦点,点A是椭圆上的一点,I是三角形F1AF2内切圆的圆心.
(I)若∠F1AF2=60°,求三角形F1AF2的面积;
(II)直线AI交x轴于D点,求$\frac{AI}{ID}$;
( III)当点A在椭圆上顶点时,圆I和圆G关于直线y=1对称,圆G与x轴的正半轴交于点H,以H为圆心的圆H:(x-2)2+y2=r2(r>0)与圆G交于B,C两点.设P是圆G上异于B,C的任意一点,直线PB、PC分别与x轴交于点M和N,求$\overrightarrow{GM}$•$\overrightarrow{GN}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设集合A={x|x2-3x-10≤0},B={x|m-1≤x≤2m+1}.
(1)当x∈Z时,求A的非空真子集的个数;
(2)若A?B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(1)当a<0时,讨论f(x)的单调性;
(2)若对任意的a∈(-3,-2),x1,x2∈[1,3]恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线x2=2py(p>0),定点C(0,p),点N是点C关于坐标原点O的对称点,过定点C(0,p)的直线l交抛物线x2=2py(p>0)于A,B两点,设N到直线l是距离为d,则|AB|•d的最小值为$4\sqrt{2}{p}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.满足集合{a}?P⊆{a,b,c}的集合P的数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.众所周知,乒乓球是中国的国球,乒乓球队内部也有着很严格的竞争机制,为了参加国际大赛,种子选手甲与三位非种子选手乙、丙、丁分别进行一场内部对抗赛,按以往多次比赛的统计,甲获胜的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,且各场比赛互不影响.
(1)若甲至少获胜两场的概率大于$\frac{7}{10}$,则甲入选参加国际大赛参赛名单,否则不予入选,问甲是否会入选最终的大名单?
(2)求甲获胜场次X的分布列和数学期望.

查看答案和解析>>

同步练习册答案