精英家教网 > 高中数学 > 题目详情
3.在公差不为零的等差数列{an}中,已知a1=1,且a1,a2,a5依次成等比数列.数列{bn}满足bn+1=2bn-1,且b1=3.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an(bn-1)}的前n项和为Sn

分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)利用错位相减法、等比数列的求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d≠0,∵a1,a2,a5依次成等比数列.
∴${a}_{2}^{2}$=a1a5即(1+d)2=1×(1+4d),d≠0,解得d=2.
∴an=1+2(n-1)=2n-1.
数列{bn}满足bn+1=2bn-1,且b1=3.
变形为:bn+1-1=2(bn-1),
∴数列{bn-1}是等比数列,首项与公比都为2.
bn-1=2n,可得bn=2n+1.
∴an=2n-1,${b_n}={2^n}+1$.
(2)an(bn-1)=(2n-1)•2n
数列{an(bn-1)}的前n项和为Sn=2+3×22+5×23+…+(2n-1)•2n
2Sn=22+3×23+…+(2n-3)•2n+(2n-1)•2n+1
∴-Sn=2+2(22+32+…+2n)-(2n-1)•2n+1=-2+2×$\frac{2({2}^{n}-1)}{2-1}$-(2n-1)•2n+1
可得:${S_n}=(2n-3)•{2^{n+1}}+6$.

点评 本题考查了错位相减法、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知$|{\overrightarrow a}|=3$,$|{\overrightarrow b}|=8$,$\overrightarrow a•\overrightarrow b=-12$,则$\overrightarrow a与\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.四棱锥P-ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:?x∈(2,+∞),2x>x2;命题q:函数f(x)=sin2x+$\sqrt{3}$cos2x的一条对称轴是x=$\frac{7π}{12}$,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列四个结论,其中一定正确的是(  )
A.$\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{CA}$B.$\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{BD}$C.$\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}$D.$\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{BD}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,为测量山高l,选择A和另一座山的山顶|PA|为测量观测点.从△ABC点测得MB=MC点的仰角∠MAN=75°,从A点测得C点的仰角∠CAB=30°以及∠MAC=75°,从C点测得∠MCA=60°.已知山高BC=80m,则山高MN=$120+40\sqrt{3}$(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列叙述中,正确的个数是(  )
①命题P:“?x∈R,x2-2≥0”的否定形式为¬P:“?x∈R,x2-2<0”
②双曲线上任意一点到左右焦点的距离的差等于双曲线的实轴长
③“m>n”是“${(\frac{2}{3})^m}>{(\frac{2}{3})^n}$的充分不必要条件;
④命题“若x2-3x-4=0,则x=4”的逆否命题为“x≠4,则x2-3x-4≠0”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对于函数f(x)=$\left\{\begin{array}{l}{sinx,sinx≤cosx}\\{cosx,sinx>cosx}\end{array}\right.$给出下列四个命题:
①该函数是以π为最小正周期的周期函数;
②当且仅当x=π+2kπ(k∈Z)时,该函数取得最小值-1;
③该函数的图象关于x=$\frac{5π}{4}$+2kπ(k∈Z)对称;
④当且仅当2kπ<x<$\frac{π}{2}$+2kπ(k∈Z)时,0<f(x)≤$\frac{\sqrt{2}}{2}$
其中正确命题的序号是③④.(请将所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆mx2+ny2=1(n>m>0)的离心率为$\frac{{\sqrt{2}}}{2}$,则双曲线mx2-ny2=1的离心率为(  )
A.2B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

同步练习册答案