精英家教网 > 高中数学 > 题目详情
1.(1)已知$\lim_{x→∞}({\frac{{2{n^2}}}{n+2}-na})=b$,求a,b的值.
(2)已知$\lim_{x→∞}\frac{3^n}{{{3^{n+1}}+{{(a+1)}^n}}}=\frac{1}{3}$,求a的取值范围.

分析 (1)通过数列的极限的运算法则,推出a,b的方程求解即可.
(2)利用数列的极限推出不等式求解即可.

解答 解:(1)$\lim_{x→∞}({\frac{{2{n^2}}}{n+2}-na})=b$,可得$\underset{lim}{n→∞}$$(\frac{2{n}^{2}-a{n}^{2}-2na}{n+2})$=b,
可得$\left\{\begin{array}{l}{2-a=0}\\{2a=b}\end{array}\right.$,解得a=2,b=4.
(2)已知$\lim_{x→∞}\frac{3^n}{{{3^{n+1}}+{{(a+1)}^n}}}=\frac{1}{3}$,
可得$\underset{lim}{n→∞}$$\frac{1}{3+(\frac{a+1}{3})^{n}}$=$\frac{1}{3}$,
可得$-1<\frac{a+1}{3}<1$,
解得a∈(-4,2).

点评 本题考查数列的极限的运算法则的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若复数z满足z+i=$\frac{2+i}{i}$,其中i为虚数单位,则|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知过原点的动直线与圆${C_1}:{x^2}+{y^2}-6x+5=0$相交于不同的两点A,B.
(1)求线段AB的中点M的轨迹C的方程;
(2)是否存在实数,使得直线L:y=k(x-4)与曲线C只有一个交点:若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若θ∈R,则直线y=sinθ•x+2的倾斜角的取值范围是[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.
(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为an万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为bn万元,求an和bn
(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元,求An和Bn
(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个函数中是R上的减函数的为(  )
A.$y={log_2}{2^{-x}}$B.$y={({\frac{1}{2}})^{-x}}$C.$y=\frac{1}{x+1}$D.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位三十岁到四十岁的公务员,得到如下列联表,因不慎丢失部分数据.
(1))完成表格数据,判断是否有99%以上的把握认为“生二胎意愿与性别有关”并说明理由;
(2)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省妇联的人数为X,求X的分布列及数学期望E(X).
男性公务员女性公务员总计
有意愿生二胎1545
无意愿生二胎25
总计
P(k2≥k00.0500.0100.001
k03.8416.63510.828
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x|+$\frac{m}{x}$-1(x≠0).
(1)当m=5时,判断f(x)在(-∞,0)的单调性,并用定义证明;
(2)若对任意x∈R,不等式f(2x)>0恒成立,求m的取值范围;
(3)讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)等差数列{an}的各项均为正数,a1=3,前n项和为Sn,S10=120,求an
(2)已知函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1,-$\frac{π}{6}$≤x≤$\frac{π}{3}$,求f(x)的值域.

查看答案和解析>>

同步练习册答案