精英家教网 > 高中数学 > 题目详情
4.(1)证明柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2
(2)若a,b∈R+且a+b=1,用柯西不等式求$\sqrt{3a+1}$+$\sqrt{3b+1}$的最大值.

分析 (1)用不等式的左边减去右边,并化简为(ad-bc)2≥0,从而得证不等式成立.
(2)由条件利用柯西不等式求得$\sqrt{3a+1}$+$\sqrt{3b+1}$的最大值.

解答 解:(1)证明:(a2+b2)(c2+d2)-(ac+bd)2=(ad-bc)2≥0
∴(a2+b2)(c2+d2)≥(ac+bd)2
(2)由柯西不等式可得(12+12)[($\sqrt{3a+1}$)2+($\sqrt{3b+1}$)2]≥($\sqrt{3a+1}$+$\sqrt{3b+1}$)2
∵a+b=1,∴($\sqrt{3a+1}$+$\sqrt{3b+1}$)2 ≤10,∴$\sqrt{3a+1}$+$\sqrt{3b+1}$的最大值为$\sqrt{10}$.

点评 本题主要考查用比较法证明不等式,柯西不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.?ABCD中,OA=4,OC=2,|$\overrightarrow{OB}$|=2$\sqrt{7}$,M为OA的中点,P为线段BC上一动点(包括端点).
(1)求∠ABC;
(2)是否存在实数λ,使(λ$\overrightarrow{OA}$-$\overrightarrow{OP}$)⊥$\overrightarrow{CM}$?若存在,求出满足条件的实数λ的取值范围,不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.代数式(1-x)(1+x)5的展开式中x3的系数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图程序框图,若实数a的值为5,则输出k的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果复数$\frac{2-bi}{1+2i}$的实部和虚部互为相反数,则实数b=(  )
A.-$\frac{2}{3}$B.-$\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,满足Sn=$\frac{4}{3}$an-$\frac{1}{3}×$2n+1+$\frac{2}{3}$,n∈N*
(Ⅰ)求证数列{an+2n}是等比数列,并求数列{an}的通项an
(Ⅱ)设T(n)=$\frac{{2}^{n}}{{S}_{n}}$,n∈N*,证明:$\sum_{i=1}^{n}$T(i)<$\frac{3}{2}$;
(Ⅲ)设R(n)=$\sum_{i=1}^{n}$$\frac{1}{i}$,n≥2,证明:$\frac{n}{2}$<R($\frac{{a}_{n}}{{2}^{n}}$)<n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某四天的用电量与当天气温,列表如下:
由表中数据得到回归直线方程$\widehat{y}$=-2x+a.据此预测当气温为-4°C时,用电量为68(单位:度).
气温(x℃)181310-1
用电量(度)24343864

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且$\overrightarrow{BA}$•$\overrightarrow{BC}$=18,则△ABC的面积是3$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某商品一直打7折出售,利润率为47%,购物节期间,该商品恢复了原价,并参加了“买一件送同样一件”的活动,则此时的利润率为5%.(注:利润率=(销售价格-成本)÷成本)

查看答案和解析>>

同步练习册答案