分析 (1)由题意可得NP=$\frac{512}{cosθ}$,PM=$\frac{216}{sinθ}$;从而写出MN即可;
(2)由题意求导可得f′(θ)=8($\frac{64sinθ}{co{s}^{2}θ}$-$\frac{27cosθ}{si{n}^{2}θ}$)=8$\frac{(4sinθ)^{3}-(3cosθ)^{3}}{co{s}^{2}θsi{n}^{2}θ}$;从而判断函数的单调性,再求最小值即可.
解答 解:(1)设MN的长度为f(θ)m,
则NP=$\frac{512}{cosθ}$,PM=$\frac{216}{sinθ}$;
故f(θ)=$\frac{512}{cosθ}$+$\frac{216}{sinθ}$,(0<θ<$\frac{π}{2}$);
(2)f(θ)=$\frac{512}{cosθ}$+$\frac{216}{sinθ}$=8($\frac{64}{cosθ}$+$\frac{27}{sinθ}$);
f′(θ)=8($\frac{64sinθ}{co{s}^{2}θ}$-$\frac{27cosθ}{si{n}^{2}θ}$)
=8$\frac{(4sinθ)^{3}-(3cosθ)^{3}}{co{s}^{2}θsi{n}^{2}θ}$;
故f(θ)在(0,$\frac{π}{2}$)上先减后增,
且当4sinθ=3cosθ,即sinθ=$\frac{3}{5}$,cosθ=$\frac{4}{5}$时,
f′(θ)=0;
此时f(θ),即MN取得最小值$\frac{512}{\frac{4}{5}}$+$\frac{216}{\frac{3}{5}}$=1000.
即MN的最小值为1000m.
点评 本题考查了函数在实际问题中的应用及导数的综合应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 将函数f(x)=cos(2x+$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位长度可得到g(x)=sin2x的图象 | |
| B. | 将函数f(x)=cos(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位长度可得到g(x)=sin2x的图象 | |
| C. | 将函数g(x)=sin2x的图象向右平移$\frac{5π}{12}$个单位长度可得到f(x)=cos(2x+$\frac{π}{3}$)的图象 | |
| D. | 将函数g(x)=sin2x的图象向左平移$\frac{5π}{12}$个单位长度可得到f(x)=cos(2x+$\frac{π}{3}$)的图象 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com