精英家教网 > 高中数学 > 题目详情
13.下列命题中,正确的是(  )
A.底面是正方形的四棱柱是正方体
B.棱锥的高线可能在几何体之外
C.有两个面互相平行,其余各面是平行四边形的几何体是棱柱
D.有一个面是多边形,其余各面都是三角形的几何体是棱锥

分析 对四个命题分别进行判断,即可得出结论.

解答 解:底面是正方形的四棱柱不一定是正方体,故A错误;
斜棱锥的高线有可能在几何体之外,故B正确;
根据棱柱的定义可得,有两个面互相平行,其余各面是平行四边形的几何体不一定是棱柱,故C错误;
有一个面是多边形,其余各面是有公共顶点的三角形的几何体是棱锥,故D错误.
故选:B.

点评 本题考查棱柱、棱锥的概念,考查学生分析解决问题的能力,正确理解概念是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA.
(Ⅰ)若a=3$\sqrt{3}$,c=5,求b;
(Ⅱ)求cosA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数 $\frac{2-i}{z}$=1+i,则$\overline z$=(  )
A.$\frac{1}{2}+\frac{3}{2}i$B.$\frac{1}{2}-\frac{3}{2}i$C.$\frac{3}{2}+\frac{1}{2}i$D.$\frac{3}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1、F2为椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1的左、右两个焦点,P为椭圆上一点,则△PF1F2的周长为(  )
A.24B.20C.16D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xoy中,抛物线C:x2=4y.
(Ⅰ)如果直线l过抛物线的焦点,且与抛物线C相交于不同的两点A,B,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值;
(Ⅱ)已知点Q(1,3),F为抛物线的焦点,在抛物线C上求一点P,使得|PF|+|PQ|取得最小值,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知指数函数y=g(x)的图象过点(2,4),定义域为R,f(x)=$\frac{-g(x)+n}{2g(x)+m}$是奇函数.
(1)试确定函数y=g(x)的解析式;
(2)求实数m,n的值;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l的倾斜角是直线x-2y=0的倾斜角的2倍,则过原点的直线l的方程为(  )
A.3x-4y=0B.4x-3y=0C.3x-4y-3=0D.4x-3y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\frac{ln(x+1)}{\sqrt{x-1}}$的定义域是(  )
A.(-1,+∞)B.(1,+∞)C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列叙述正确的是(  )
A.数列1,3,4,5可表示为{1,3,4,5}B.数列0,1,2,3,…可表示为{n}
C.数列0,1,0,1,…是常数列D.数列{$\frac{n}{n+1}$}是递增数列

查看答案和解析>>

同步练习册答案