18£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬ÒÑÖª¡ÏC=90¡ã£¬AC=BC=4£¬DÊÇABµÄÖе㣬µãE¡¢F·Ö±ðÔÚAC¡¢BC±ßÉÏÔ˶¯£¨µãE²»ÓëµãA¡¢CÖØºÏ£©£¬ÇÒ±£³ÖAE=CF£¬Á¬½ÓDE¡¢DF¡¢EF£®ÔÚ´ËÔ˶¯±ä»¯µÄ¹ý³ÌÖУ¬ÓÐÏÂÁнáÂÛ£º¢ÙËıßÐÎCEDFÓпÉÄܳÉΪÕý·½ÐΣ»¢Ú¡÷DFEÊǵÈÑüÖ±½ÇÈý½ÇÐΣ»¢ÛËıßÐÎCEDFµÄÃæ»ýÊǶ¨Öµ£»¢ÜµãCµ½Ïß¶ÎEFµÄ×î´ó¾àÀëΪ$\sqrt{2}$£®
ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ£¨¡¡¡¡£©?
A£®¢Ù¢ÜB£®¢Ú¢ÛC£®¢Ù¢Ú¢ÜD£®¢Ù¢Ú¢Û¢Ü

·ÖÎö ¢Ùµ±µãE£¬F·Ö±ðΪAC£¬CBµÄÖеãʱ£¬ËıßÐÎCEDFΪÕý·½ÐΣ¬¼´¿ÉÅжϳöÕýÎó£»
¢ÚÈçͼËùʾ£¬½¨Á¢Ö±½Ç×ø±êϵ£¬ÉèE£¨a£¬0£©£¬ÔòF£¨0£¬4-a£©£¬D£¨2£¬2£©£¬ÓÚÊÇ$\overrightarrow{DF}$=£¨-2£¬2-a£©£¬$\overrightarrow{DE}$=£¨a-2£¬-2£©£¬¼ÆËã$\overrightarrow{DF}•\overrightarrow{DE}$=0£¬¿ÉµÃ$\overrightarrow{DE}¡Í\overrightarrow{DF}$£¬ÓÖ$|\overrightarrow{DE}|$=$|\overrightarrow{DF}|$=$\sqrt{£¨a-2£©^{2}+4}$£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÛËıßÐÎCEDFµÄÃæ»ý=S¡÷ABC-S¡÷ADE-S¡÷BDF=$\frac{1}{2}¡Á{4}^{2}$-$\frac{1}{2}¡ÁAD¡ÁAEsin4{5}^{¡ã}$-$\frac{1}{2}¡ÁBD¡ÁBFsin4{5}^{¡ã}$£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÜÉèµãCµ½Ïß¶ÎEFµÄ¾àÀëΪh£¬ÀûÓÃS¡÷CEF=$\frac{1}{2}CE•CF$=$\frac{1}{2}h•EF$£¬¿ÉµÃ$h=\frac{CE•CF}{\sqrt{C{E}^{2}+C{F}^{2}}}$£¬ÉèCE=x£¬ÔòCF=4-x£¬¿ÉµÃh=$\frac{4x-{x}^{2}}{\sqrt{2{x}^{2}-8x+16}}$£¬Áî4x-x2=t¡Ê£¨0£¬4]£¬Ôòh£¨x£©=g£¨t£©=$\frac{t}{\sqrt{16-2t}}$£¬g2£¨t£©=$\frac{{t}^{2}}{16-2t}$=f£¨t£©£¬ÀûÓõ¼ÊýÑо¿Æäµ¥µ÷ÐÔ¼«ÖµÓë×îÖµ£¬¼´¿ÉÅжϳöÕýÎó£®

½â´ð ½â£º¢Ùµ±µãE£¬F·Ö±ðΪAC£¬CBµÄÖеãʱ£¬ËıßÐÎCEDFΪÕý·½ÐΣ¬ÕýÈ·£»
¢ÚÈçͼËùʾ£¬½¨Á¢Ö±½Ç×ø±êϵ£¬ÉèE£¨a£¬0£©£¬ÔòF£¨0£¬4-a£©£¬D£¨2£¬2£©£¬ÓÚÊÇ$\overrightarrow{DF}$=£¨-2£¬2-a£©£¬$\overrightarrow{DE}$=£¨a-2£¬-2£©£¬
¡à$\overrightarrow{DF}•\overrightarrow{DE}$=-2£¨a-2£©-2£¨2-a£©=0£¬¡à$\overrightarrow{DE}¡Í\overrightarrow{DF}$£¬ÓÖ$|\overrightarrow{DE}|$=$|\overrightarrow{DF}|$=$\sqrt{£¨a-2£©^{2}+4}$£¬Òò´Ë¡÷DFE¿ÉÒÔÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÕýÈ·£»
¢ÛËıßÐÎCEDFµÄÃæ»ý=S¡÷ABC-S¡÷ADE-S¡÷BDF=$\frac{1}{2}¡Á{4}^{2}$-$\frac{1}{2}¡ÁAD¡ÁAEsin4{5}^{¡ã}$-$\frac{1}{2}¡ÁBD¡ÁBFsin4{5}^{¡ã}$=8-$\frac{\sqrt{2}}{2}£¨AE+BF£©$=$8-\frac{\sqrt{2}}{2}¡Á4$=8-2$\sqrt{2}$ÊǶ¨Öµ£¬Òò´ËÕýÈ·£»
¢ÜÉèµãCµ½Ïß¶ÎEFµÄ¾àÀëΪh£¬¡ßS¡÷CEF=$\frac{1}{2}CE•CF$=$\frac{1}{2}h•EF$£¬¡à$h=\frac{CE•CF}{\sqrt{C{E}^{2}+C{F}^{2}}}$£¬ÉèCE=x£¬ÔòCF=4-x£¬¡àh=$\frac{x£¨4-x£©}{\sqrt{{x}^{2}+£¨4-x£©^{2}}}$=$\frac{4x-{x}^{2}}{\sqrt{2{x}^{2}-8x+16}}$£¬Áî4x-x2=t¡Ê£¨0£¬4]£¬Ôòh£¨x£©=g£¨t£©=$\frac{t}{\sqrt{16-2t}}$£¬g2£¨t£©=$\frac{{t}^{2}}{16-2t}$=f£¨t£©£¬f¡ä£¨t£©=$\frac{2t£¨16-2t£©-£¨-2£©{t}^{2}}{£¨16-2t£©^{2}}$=$\frac{2t£¨16-t£©}{£¨16-2t£©^{2}}$£¾0£¬¡àº¯Êýf£¨t£©ÔÚt¡Ê£¨0£¬4]Éϵ¥µ÷µÝÔö£¬¡àf£¨t£©max=f£¨4£©=$\frac{16}{16-8}$=2£¬
Òò´Ëg£¨t£©¼´hµÄ×î´óֵΪ$\sqrt{2}$£¬ÕýÈ·£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹ØÏµ¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼«ÖµÓë×îÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªÅ×ÎïÏßC£ºy2=4x£¬µãM£¨-1£¬1£©£¬¹ýCµÄ½¹µãÇÒбÂÊΪkµÄÖ±ÏßÓëC½»ÓÚA£¬BÁ½µã£¬Èô$\overrightarrow{MA}•\overrightarrow{MB}=0$£¬ÔòʵÊýkµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªµÈ²îÊýÁÐ{an}Âú×㣬a1+a2+a3=9£¬a2+a8=18£®ÊýÁÐ{bn}µÄǰnºÍΪSn£¬ÇÒÂú×ãSn=2bn-2£®
£¨¢ñ£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨¢ò£©ÊýÁÐ{cn}Âú×ã${c_n}=\frac{a_n}{b_n}$£¬ÇóÊýÁÐ{cn}µÄǰnºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®É躯Êýf£¨x£©=$sin£¨2x+\frac{¦Ð}{3}£©$µÄͼÏóΪM£¬ÏÂÃæ½áÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Í¼ÏóM¿ÉÓÉy=sin2xµÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½
B£®º¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚÊÇ4¦Ð
C£®Í¼ÏóM¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{3}$¶Ô³Æ
D£®º¯Êýy=f£¨x£©ÔÚÇø¼ä$£¨-\frac{5¦Ð}{6}£¬\frac{¦Ð}{6}£©$ÉÏÊÇÔöº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊǺ¯Êýf£¨x£©=$\frac{1}{2}+{log_2}\frac{x}{1-x}$µÄͼÏóÉÏÈÎÒâÁ½µã£¬PÊÇABÖе㣬ÇÒPµÄºá×ø±êΪ$\frac{1}{2}$£®
£¨¢ñ£©ÇóÖ¤£ºPµãµÄ×Ý×ø±êΪ¶¨Öµ£»
£¨¢ò£©ÈôSn=$f£¨\frac{1}{n}£©+f£¨\frac{2}{n}£©+¡­+f£¨\frac{n-1}{n}£©$£¬n¡ÊN*£¬ÇÒn¡Ý2£¬ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚÁâÐÎABCDÖУ¬¡ÏBAD=60¡ã£¬AB=4£¬µãFÊǶԽÇÏßBDÉϵ͝µã£¬Ôò$\overrightarrow{AF}$•$\overrightarrow{BF}$µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®-3B£®-2C£®-$\frac{3}{2}$D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÃüÌâp£º¡°½«º¯Êýy=sin£¨2x+¦È£©µÄͼÏóÑØxÖáÏòÓÒÆ½ÒÆ$\frac{¦Ð}{16}$¸öµ¥Î»ºó£¬µÃµ½Ò»¸ö¹ØÓÚyÖá¶Ô³ÆµÄͼÏó¡±£¬ÃüÌâq¡°¦È=k¦Ð+$\frac{5¦Ð}{8}$£¨k¡ÊZ£©¡°£¬ÔòpÊÇqµÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=x+1£¨0¡Üx¡Ü1£©£¬g£¨x£©=2x-$\frac{1}{2}$£¨x¡Ý1£©£¬º¯Êýh£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬0¡Üx£¼1}\\{g£¨x£©£¬x¡Ý1}\end{array}\right.$£¬Èô·½³Ìh£¨x£©-k=0£¬k¡Ê[$\frac{3}{2}$£¬2£©ÓÐÁ½¸ö²»Í¬µÄʵ¸ùm£¬n£¨m£¾n¡Ý0£©£¬Ôòn•g£¨m£©µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[$\frac{3}{2}$£¬2£©B£®[$\frac{1}{4}$£¬2£©C£®[$\frac{3}{4}$£¬3]D£®[$\frac{3}{4}$£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Çó¹ýµã£¨3£¬-2£©ÇÒÓëÍÖÔ²4x2+9y2=36ÓÐÏàͬ½¹µãµÄÍÖÔ²·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸