精英家教网 > 高中数学 > 题目详情
9.已知等差数列{an}满足,a1+a2+a3=9,a2+a8=18.数列{bn}的前n和为Sn,且满足Sn=2bn-2.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)数列{cn}满足${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n和Tn

分析 (Ⅰ)设等差数列{an}的公差为d,利用等差中项的性质及已知条件“a1+a2+a3=9、a2+a8=18”可得公差,进而可得数列{an}的通项;利用“bn+1=Sn+1-Sn”及“b1=2b1-2”,可得公比和首项,进而可得数列{bn}的通项;
(Ⅱ)利用${c_n}=\frac{a_n}{b_n}$=$\frac{2n-1}{{2}^{n}}$,写出Tn、$\frac{1}{2}$Tn的表达式,利用错位相减法及等比数列的求和公式即得结论.

解答 解:(Ⅰ)设等差数列{an}的公差为d,
∵a1+a2+a3=9,∴3a2=9,即a2=3,
∵a2+a8=18,∴2a5=18,即a5=9,
∴3d=a5-a2=9-3=6,即d=2,
∴a1=a2-d=3-2=1,
∴an=1+2(n-1)=2n-1;
∵Sn=2bn-2,
∴bn+1=Sn+1-Sn=2bn+1-2bn
即bn+1=2bn
又b1=2b1-2,∴b1=2,
∴数列{bn}是以首项和公比均为2的等比数列,
∴bn=2•2n-1=2n
∴数列{an}和{bn}的通项公式分别为:an=2n-1、bn=2n
(Ⅱ)由(I)知${c_n}=\frac{a_n}{b_n}$=$\frac{2n-1}{{2}^{n}}$,
∴Tn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+…+$\frac{2n-1}{{2}^{n}}$,
∴$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
两式相减,得$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+…+$\frac{2}{{2}^{n}}$-$\frac{2n-1}{{2}^{n}}$
=$\frac{1}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n}}$
=$\frac{3}{2}$-$\frac{2n+3}{{2}^{n+1}}$,
∴Tn=3-$\frac{2n+3}{{2}^{n}}$.

点评 本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设x,y满足条件$\left\{\begin{array}{l}{0≤x≤0}\\{0≤y≤2}\\{2x-y≥1}\end{array}\right.$,则t=2y-x的最大值为(  )
A.-1B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知几何体的三视图如图所示,可得到这几何体的体积是2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=cosx,x∈($\frac{π}{2},3π$),若函数G(x)=f(x)-m有三个零点,且这三个零点从小到大依次成等比数列,则m的值等于-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V1.直径为6的球的体积为V2,则V1:V2=(  )
A.1:2B.2:27C.1:3D.4:27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.以双曲线C:$\frac{x^2}{1}-\frac{y^2}{3}$=1的左焦点为极点,x轴正方向为极轴方向(长度单位不变)建立极坐标系,则双曲线C的一条倾斜角为锐角的渐近线的极坐标方程是$ρsin(\frac{π}{3}-θ)=\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax-2x(a>0,且a≠1).
(Ⅰ)当a=2时,求曲线f(x)在点P(2,f(2))处的切线方程;
(Ⅱ)若f(x)的值恒非负,试求a的取值范围;
(Ⅲ)若函数f(x)存在极小值g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在△ABC中,已知∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①四边形CEDF有可能成为正方形;②△DFE是等腰直角三角形;③四边形CEDF的面积是定值;④点C到线段EF的最大距离为$\sqrt{2}$.
其中正确的结论是(  )?
A.①④B.②③C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC 中,D为BC边上任意一点,O为AD的中点,若$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,其中 λ,μ∈R,则λ+μ=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案