精英家教网 > 高中数学 > 题目详情
14.己知棱长为2的正方体ABCD-A1B1C1D1的一个面A1B1C1D1在一半球底面上,且A,B、C,D四个顶点都在此半球面上,則此半球的体积为(  )
A.4$\sqrt{6}$πB.2$\sqrt{6}$πC.16$\sqrt{3}$πD.8$\sqrt{6}$π

分析 先求正方体的底面对角线的长,再求球的半径,然后求半球的体积.

解答 解:正方体的顶点A、B、C、D在半球的底面内,顶点A1、B1、C1、D1在半球球面上,
底面ABCD的中心到上底面顶点的距离就是球的半径$\sqrt{{2}^{2}+(\sqrt{2})^{2}}$=$\sqrt{6}$,
半球的体积:$\frac{1}{2}×\frac{4}{3}π×(\sqrt{6})^{3}$=4$\sqrt{6}$π.
故选:A.

点评 本题考查球内接多面体的知识,考查空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知$\underset{lim}{x→∞}$($\frac{{x}^{2}}{x+1}$-ax-b)=0,其中a,b是常数,则(  )
A.a=b=1B.a=-1,b=1C.a=1,b=-1D.a=b=-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过点M(0,2)的直线l与抛物线y2=-4x交于A,B两点,与x轴交于点C,则有(  )
A.|MA|+|MB|=2|MC|B.|MA|•|MB|=|MC|2C.|MA|=|MB|•|MC|D.|MA|2=|MB|2+|MC|2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两条直线l1:x-ay=0(a≠0),l2:x+y-3=0.
(1)若l1⊥l2,求a的值;
(2)在(1)的条件下,如果直线l3经过l1与l2的交点,且经过点A(2,4),求直线l3的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x≥0)}\\{4xcosπx-1(x<0)}\end{array}\right.$,g(x)=kx-1(x∈R),若函数y=f(x)-g(x)在x∈[-2,3]内有4个零点,则实数k的取值范围是(  )
A.(2$\sqrt{2}$,$\frac{11}{3}$)B.(2$\sqrt{2}$,$\frac{11}{3}$]C.(2$\sqrt{3}$,4)D.(2$\sqrt{3}$,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,AB=2AC=2,AD是BC边上的中线.
(Ⅰ)求sin∠CAD:sin∠BAD;
(Ⅱ)若∠B=30°,求AD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若z=1-$\sqrt{2}$i,则复数z+$\frac{1}{z}$在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是某样本数据的茎叶图,则该样本数据的茎叶图,则该样本数据的中位数(  )
A.22B.25C.28D.31

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.不等式组$\left\{{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}}\right.$表示的平面区域记为$\sum$.
(1)求平面区域$\sum$面积;
(2)求$\sum$包含的整点个数.

查看答案和解析>>

同步练习册答案