精英家教网 > 高中数学 > 题目详情
4.已知$\underset{lim}{x→∞}$($\frac{{x}^{2}}{x+1}$-ax-b)=0,其中a,b是常数,则(  )
A.a=b=1B.a=-1,b=1C.a=1,b=-1D.a=b=-1

分析 化简$\frac{{x}^{2}}{x+1}$-ax-b=$\frac{(1-a){x}^{2}-(a+b)x-b}{x+1}$,从而由题意得到1-a=0,a+b=0,从而解得.

解答 解:$\frac{{x}^{2}}{x+1}$-ax-b
=$\frac{{x}^{2}-(ax+b)(x+1)}{x+1}$
=$\frac{(1-a){x}^{2}-(a+b)x-b}{x+1}$,
∵$\underset{lim}{x→∞}$($\frac{{x}^{2}}{x+1}$-ax-b)=0,
∴1-a=0,a+b=0,
解得,a=1,b=-1,
故选:C.

点评 本题考查了极限运算,注意化简运算即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求1g5(1g8+1g1000)+(1g${2}^{\sqrt{3}}$)2+lg$\frac{1}{6}$+1g0.06的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的三个顶点分别是A(4,0),B(6,7),C(0,3).
(1)求BC边上的高所在的直线方程;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在直角坐标系xOy中,角α的顶点是原点,始边与x轴正半轴重合,在其终边上有一点(sin$\frac{17π}{12}$,cos$\frac{17π}{12}$),满足条件的最小正角α为$\frac{13π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若60a=3,60b=5.
(1)求1+a-b的值;
(2)求601+a-b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)在区间[0,2π]上取得最大值1和最小值-1的x的值均唯一,则ω的取值范围是[$\frac{7}{12}$,$\frac{13}{12}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设变量x、y满足约束条件$\left\{\begin{array}{l}{x+3y-3≤0}\\{x-y+1≥0}\\{y≥-1}\end{array}\right.$,则目标函数z=2x+y的最大值为(  )
A.1B.3C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{BC}$•$\overrightarrow{CA}$,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,则角B的大小是45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.己知棱长为2的正方体ABCD-A1B1C1D1的一个面A1B1C1D1在一半球底面上,且A,B、C,D四个顶点都在此半球面上,則此半球的体积为(  )
A.4$\sqrt{6}$πB.2$\sqrt{6}$πC.16$\sqrt{3}$πD.8$\sqrt{6}$π

查看答案和解析>>

同步练习册答案