精英家教网 > 高中数学 > 题目详情
11.某城市关系要好的A,B,C,D四个家庭各有两个小孩共8人,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有(  )
A.18种B.24种C.36种D.48种

分析 根据题意,分2种情况讨论:①、A户家庭的孪生姐妹在甲车上,甲车上剩下两个要来自不同的家庭,②、A户家庭的孪生姐妹不在甲车上,每种情况下分析乘坐人员的情况,由排列、组合数公式计算可得其乘坐方式的数目,由分类计数原理计算可得答案.

解答 解:根据题意,分2种情况讨论:
①、A户家庭的孪生姐妹在甲车上,甲车上剩下两个要来自不同的家庭,
可以在剩下的三个家庭中任选2个,再从每个家庭的2个小孩中任选一个,来乘坐甲车,
有C32×C21×C21=12种乘坐方式;
②、A户家庭的孪生姐妹不在甲车上,
需要在剩下的三个家庭中任选1个,让其2个小孩都在甲车上,
对于剩余的2个家庭,从每个家庭的2个小孩中任选一个,来乘坐甲车,
有C31×C21×C21=12种乘坐方式;
则共有12+12=24种乘坐方式;
故选:B.

点评 本题考查排列、组合的应用,涉及分类计数原理的应用,关键是依据题意,分析“乘坐甲车的4名小孩恰有2名来自于同一个家庭”的可能情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,已知侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AB=AD=1,CB=CD=$\sqrt{3}$,∠BCD=60°,CC1=$\sqrt{3}$.
(1)若E是线段A1A上的点且满足A1E=3AE,求证:平面EBD⊥平面C1BD;
(2)求二面角C-C1D-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.己知0<a<b<l<c,则(  )
A.ab>aaB.ca>cbC.logac>logbcD.logbc>logb a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O为直角坐标系的坐标原点,双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(b>a>0)$上有一点$P(\sqrt{5},m)$(m>0),点P在x轴上的射影恰好是双曲线C的右焦点,过点P作双曲线C两条渐近线的平行线,与两条渐近线的交点分别为A,B,若平行四边形PAOB的面积为1,则双曲线的标准方程是(  )
A.${x^2}-\frac{y^2}{4}=1$B.$\frac{x^2}{2}-\frac{y^2}{3}=1$C.${x^2}-\frac{y^2}{6}=1$D.$\frac{x^2}{{\frac{3}{2}}}-\frac{y^2}{{\frac{7}{2}}}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出的结果是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的偶函数f(x),满足f(x+4)=f(x),且x∈[0,2]时,f(x)=sinπx+2|sinπx|,则方程f(x)-|lgx|=0在区间[0,10]上根的个数是(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=|lnx|,$g(x)=\left\{\begin{array}{l}0\\|{{x^2}-4}|-2\end{array}\right.$$\begin{array}{l}({0<x≤1})\\({x>1})\end{array}$则方程|f(x)+g(x)|=1实根的个数为(  )
A.2个B.4个C.6个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数 f(x)=x+$\frac{2b}{x}$+a,x∈[a,+∞),其中a>0,b∈R,记m(a,b)为 f(x)的最小值,则当m(a,b)=2时,b的取值范围为(  )
A.b>$\frac{1}{3}$B.b<$\frac{1}{3}$C.b>$\frac{1}{2}$D.b<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知平面向量$\overrightarrow a=(\;3,\;1\;),\;\overrightarrow b=(\;t,\;-3\;)$,且$\overrightarrow a⊥\overrightarrow b$,则t=(  )
A.-1B.1C.3D.-3

查看答案和解析>>

同步练习册答案