精英家教网 > 高中数学 > 题目详情
6.执行如图所示的程序框图,则输出的结果是(  )
A.7B.8C.9D.10

分析 通过分析循环,推出循环规律,利用循环的次数,求出输出结果.

解答 解:第一次循环:S=log2$\frac{2}{4}$,n=3;
第二次循环:S=log2$\frac{2}{4}$+log2$\frac{4}{6}$,n=5;
第三次循环:S=log2$\frac{2}{4}$+log2$\frac{4}{6}$+log2$\frac{6}{8}$=-2,n=7;
第四次循环:S=log2$\frac{2}{4}$+log2$\frac{4}{6}$+log2$\frac{6}{8}$+log2$\frac{8}{10}$<-2,n=9,
∴输出的结果是n=9,
故选:C.

点评 本题考查程序框图的应用,数列的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若锐角α,β满足$sinα=\frac{4}{5}$,$tan(α-β)=\frac{2}{3}$,则tanβ=$\frac{6}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a≠0,函数f(x)=$\left\{\begin{array}{l}{4lo{g}_{2}(-x),x<0}\\{|{x}^{2}+ax|,x≥0}\end{array}\right.$,若f[f(-$\sqrt{2}$)]=4,则f(a)等于(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在公差不为零的等差数列{an}中,$2{a_3}+2{a_{11}}=a_7^2$,数列{bn}是各项为正的等比数列,且b7=a7则b6b8的值为(  )
A.2B.1C.4D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=loga(x-1)+1(a>0且a≠1)恒过定点M,且点M在直线$\frac{x}{m}+\frac{y}{n}=1$(m>0,n>0)上,则m+n的最小值为(  )
A.$3+2\sqrt{2}$B.8C.$4\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某城市关系要好的A,B,C,D四个家庭各有两个小孩共8人,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有(  )
A.18种B.24种C.36种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若y=f(x)是定义域在R上的函数,则y=f(x)为奇函数的一个充要条件为(  )
A.f(0)=0B.对?x∈R,f(x)=0都成立
C.?x0∈R,使得f(x0)+f(-x0)=0D.对?x∈R,f(x)+f(-x)=0都成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设x、y满足不等式组$\left\{\begin{array}{l}{x-2y+1≤0}\\{2x+y-6≤0}\\{x-y+a≥0}\end{array}\right.$,其中a为常数,当且仅当x=y=1时,目标函数z=x+2y取得最小值,则目标函数z的最大值为(  )
A.8B.$\frac{27}{5}$C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,a1=1,an+1-an=4,则a20的值为77.

查看答案和解析>>

同步练习册答案