精英家教网 > 高中数学 > 题目详情
已知椭圆C的方程是
x2
a2
+
y2
b2
=1,(a>b>0),倾斜角为45°的直线l过椭圆的右焦点且交椭圆于A(x1,y1),B(x2,y2)两点.
(1)若椭圆的左顶点为(-2,0),离心率e=
1
2
,求椭圆C的方程;
(2)设向量
OP
=λ(
OA
+
OB
)(λ>0),若点P在椭圆C上,求λ的取值范围.
考点:直线与圆锥曲线的综合问题,平面向量数量积的运算
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知a=2,e=
c
a
=
1
2
,由此能求出椭圆方程.
(2)设直线l的方程为y=x-c.由
y=x-c
x2
a2
+
y2
b2
=1
,得(b2+a2)x2-2a2cx+a2(c2-b2)=0,由此利用韦达定理、向量知识,结合已知条件能求出λ的取值范围.
解答: (本小题满分12分)
解:(1)由已知a=2,e=
c
a
=
1
2

∴c=1,b2=a2-c2=3,
∴椭圆方程为
x2
4
+
y2
3
=1
.…(3分).
(2)设直线l的方程为y=x-c.
y=x-c
x2
a2
+
y2
b2
=1
,得(b2+a2)x2-2a2cx+a2(c2-b2)=0,
x1+x2=
2a2c
a2+b2
,从而y1+y2=
-2b2c
a2+b2
.…(5分)
OA
+
OB
=(
2a2c
a2+b2
-2b2c
a2+b2
)

OP
=λ(
OA
+
OB
)=(
a2c
a2+b2
-2λb2c
a2+b2
)

∵点P在椭圆C上,∴
(
a2c
a2+b2
)
2
a2
+
(
-2λb2c
a2+b2
)
2
b2
=1
…(8分)
2a2c2+4λ2b2c2=(a2+b22
解得λ2=
a2+b2
4c2
…(10分)
c2+b2=a2,e=
c
a
,且0<e<1,
λ2=
a2+b2
4c2
=
2a2-c2
4c2
=
1
2e2
-
1
4
1
4

又λ>0,∴λ>
1
2
即λ的取值范围是(
1
2
,+∞)
.…(12分)
点评:本题考查椭圆方程的求法,考查实数的取值范围的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤4},B={x|x>a},3∈A∩B,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,0<ω<2,|φ|<
π
2
)的一系列对应值如下表:
x-
π
6
 
π
3
 
6
 
3
 
11π
6
 
3
 
17π
6
y-2 0 2 0-2 0 2
(Ⅰ)根据表格提供的数据求函数y=f(x)的解析式;
(Ⅱ)若函数f(kx)(k<0)的最小正周期为
3
,且当x∈[0,
9
)时,方程f(kx)=m恰有两个不同的实数解,求实数m的取值范围,并求这两个实数解的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点E,F分别是正方体ABCD-A1B1C1D1的棱AB,AA1的中点,点M,N分别是线段D1E与C1F上的点,则与平面ABCD垂直的直线MN有
 
条.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,0),B(-1,0),P是平面上的一个动点,且满足|
PA
|•|
AB
|=
PB
AB

(1)求点P的轨迹方程;
(2)若直线y=x+m(m≠0)与点P的轨迹交于M,N两点,且
OM
ON
,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)求值:sin
4
+cos
3
+tan
4

(Ⅱ)已知cosx=
3
5
,0<x<
π
2
,求sinx和tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机抽取某中学高一年级学生的一次数学统测成绩得到一样本,其分组区间和频数:[50,60),2:[60,70),7:[70,80),10:[80,90),x[90,100],2,其频率分布直方图受到破坏,可见部分如图所示,据此解答如下问题:
(1)求样本的人数及x的值;
(2)从成绩不低于80分的样本中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高二年纪在依次数学必修模块考试后随机抽取40名学生的成绩,按成绩共分为五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100),得到的频率直方图如图所示,同时规定成绩在90分以上的记为A级,成绩小于90分的记为B级.
(1)如果用分层抽样的方法从成绩为A和B的学生中共选出10人,求成绩为A和B的学生各选出几人.
(2)已知a是在(1)中选出的成绩为B的学生中的一个,若从选出的成绩为B的学生中选出2人参加某问卷调查,求a被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax,(a∈R).
(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)当lnx<ax对于x∈(0,+∞)上恒成立时,求a的取值范围;
(Ⅲ)若k,n∈N*,且1≤k≤n,证明:
1
(1+
1
n
)
n
+
1
(1+
2
n
)
n
+…+
1
(1+
k
n
)
n
+…+
1
(1+
n
n
)
n
1
e-1
(1-
1
en
)

查看答案和解析>>

同步练习册答案