精英家教网 > 高中数学 > 题目详情
函数f(x)=2x-x2的零点个数是
 
考点:函数零点的判定定理
专题:函数的性质及应用
分析:可以转化为;g(x)-2x,h(x)=x2图象的交点个数,运用图象判断即可.注意(2,4)点.
解答: 解:∵函数f(x)=2x-x2的图象,
∴可以转化为;g(x)-2x,h(x)=x2图象的交点个数,

据图象可判断;有3个交点,
所以函数f(x)=2x-x2的零点个数是3.
故答案为:3
点评:本题考查了指数函数,幂函数的图象,运用图象解决函数零点的个数问题,难度很小,属于容易题,但是特别容易出错,图象没画完,漏掉(2,4)点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正数数列{an}中,a1=1,且关于x的方程x2+
an
x+
1
2
(an-1+2n-1)=0(n∈N*,n≥2)有两个相等的实根
(1)求证:数列{
an
2n
}是等差数列
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:
lna1
2
lna2
5
lna3
8
lnan
3n-1
=
3n+2
2
(n∈N*),则a10=(  )
A、e26
B、e29
C、e32
D、e35

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C是三内角,当sinC(cosAcosB+sinAsinB)-
3
cos(A+B)取得最大值时,则A=(  )
A、
π
6
B、
π
4
C、
π
3
D、
12

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(n)为n2+1(n∈N*)的各位数字之和,如:142+1=197,1+9+7=17,则f(14)=17;记f1(n)=f(n),f2(n)=f(f1(n)),f3(n)=f (f2(n)),…fk+1(n)=f(fk(n)),k∈N*
则f2015(9)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在高三年级最近五次考试中的数学成绩如下表:
第x次考试12345
数学成绩y分132137126130
若x,y具有相关关系,利用表格中的数据求得的回归直线方程为y=0.4x+128.8,则★处的数据应该为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2}的不同分拆种数是(  )
A、8B、9C、16D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos(x+
π
3
)[sin(x+
π
3
)-
3
cos(x+
π
3
)].
(1)求f(x)的值域和最小正周期;
(2)若对任意x∈[0,
π
3
],m[f(x)+
3
]+2=0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+1)x-4(a+5),g(x)=ax2-x+5,其中a∈R
(1)若函数f(x),g(x)存在相同的零点,求a的值
(2)若存在两个正整数m,n,当x0∈(m,n)时,有f(x0)<0与g(x0)<0同时成立,求n的最大值及n取最大值时a的取值范围.

查看答案和解析>>

同步练习册答案