| A. | 0.3 | B. | 0.4 | C. | 0.5 | D. | 0.6 |
分析 求出基本事件总数为n=${C}_{5}^{2}$=10,再利用对立事件及列举法求出这两个数不相邻包含的基本事件个数,由此能求出这两个数不相邻的概率.
解答 解:从1,2,3,4,5中任意取出两个不同的数,
基本事件总数为n=${C}_{5}^{2}$=10,
这两个数相邻包含的基础事件有:(1,2),(2,3),(3,4),(4,5),
∴这两个数不相邻包含的基本事件个数m=10-4=6,
则这两个数不相邻的概率为p=$\frac{m}{n}=\frac{6}{10}=0.6$.
故选:D.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式及列举法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{20}$ | B. | $\frac{1}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com