精英家教网 > 高中数学 > 题目详情
18.从1,2,3,4,5中任意取出两个不同的数,则这两个数不相邻的概率为(  )
A.0.3B.0.4C.0.5D.0.6

分析 求出基本事件总数为n=${C}_{5}^{2}$=10,再利用对立事件及列举法求出这两个数不相邻包含的基本事件个数,由此能求出这两个数不相邻的概率.

解答 解:从1,2,3,4,5中任意取出两个不同的数,
基本事件总数为n=${C}_{5}^{2}$=10,
这两个数相邻包含的基础事件有:(1,2),(2,3),(3,4),(4,5),
∴这两个数不相邻包含的基本事件个数m=10-4=6,
则这两个数不相邻的概率为p=$\frac{m}{n}=\frac{6}{10}=0.6$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式及列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.按下面的程序框图进行计算时,若输入的x是正实数,输出的x=121,则输入的正实数x所有可能取值的个数为(  )
A.5B.6C.4D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-a|(a>0).
(Ⅰ)求证:f(m)+f(n)>|m-n|;
(Ⅱ)解不等式f(x)+f(-x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:mx2+3my2=1(m>0)的长轴长为$2\sqrt{6}$,O为坐标原点.
(1)求椭圆C的方程和离心率.
(2)设点A(3,0),动点B在y轴上,动点P在椭圆C上,且点P在y轴的右侧.若BA=BP,求四边形OPAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为(  )
A.$\frac{3}{20}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在三棱锥ABCD中,BC⊥CD,Rt△BCD斜边上的高为1,三棱锥ABCD的外接球的直径是AB,若该外接球的表面积为16π,则三棱锥ABCD体积的最大值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x|-|x-1|.
(1)若关于x的不等式f(x)≥|m-1|的解集非空,求实数m的取值集合M.
(2)记(1)中数集M中的最大值为k,正实数a,b满足a2+b2=k,证明:a+b≥2ab.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x-4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax对任意的实数x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数$f(x)=\frac{9}{8cos2x+16}-{sin^2}x$的最小值为m,且与m对应的x最小正值为n,则m+n=$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案