精英家教网 > 高中数学 > 题目详情
6.已知椭圆C:mx2+3my2=1(m>0)的长轴长为$2\sqrt{6}$,O为坐标原点.
(1)求椭圆C的方程和离心率.
(2)设点A(3,0),动点B在y轴上,动点P在椭圆C上,且点P在y轴的右侧.若BA=BP,求四边形OPAB面积的最小值.

分析 (1)将椭圆方程化为标准方程,由题意可得a,可得b,即可得到椭圆方程,再由离心率公式计算即可得到所求值;
(2)设AP中点为D,由|BA|=||BP|,所以BD⊥AP,求得AP的斜率,进而得到BD的斜率和中点,可得直线BD的方程,即有B的坐标,求得四边形OPAB的面积为S=S△OAP+S△OMB,化简整理,运用基本不等式即可得到最小值.

解答 解:(1)由题意知椭圆C:$\frac{x^2}{{\frac{1}{m}}}+\frac{y^2}{{\frac{1}{3m}}}=1$,
所以${a^2}=\frac{1}{m}$,${b^2}=\frac{1}{3m}$,
故$2a=2\sqrt{\frac{1}{m}}=2\sqrt{6}$,解得$m=\frac{1}{6}$,
所以椭圆C的方程为$\frac{x^2}{6}+\frac{y^2}{2}=1$.
因为$c=\sqrt{{a^2}-{b^2}}=2$,所以离心率$e=\frac{c}{a}=\frac{{\sqrt{6}}}{3}$.
(2)设线段AP的中点为D.
因为BA=BP,所以BD⊥AP.
由题意知直线BD的斜率存在,
设点P的坐标为(x0,y0)(y0≠0),
则点D的坐标为$(\frac{{{x_0}+3}}{2},\frac{y_0}{2})$,直线AP的斜率${k_{AP}}=\frac{y_0}{{{x_0}-3}}$,
所以直线BD的斜率${k_{BD}}=-\frac{1}{{{k_{AP}}}}=\frac{{3-{x_0}}}{y_0}$,
故直线BD的方程为$y-\frac{y_0}{2}=\frac{{3-{x_0}}}{y_0}(x-\frac{{{x_0}+3}}{2})$.
令x=0,得$y=\frac{x_0^2+y_0^2-9}{{2{y_0}}}$,故$B(0,\frac{x_0^2+y_0^2-9}{{2{y_0}}})$.
由$\frac{x_0^2}{6}+\frac{y_0^2}{2}=1$,得$x_0^2=6-3y_0^2$,化简得$B(0,\frac{-2y_0^2-3}{2y_0^2})$.
因此,S四边形OPAB=S△OAP+S△OAB=$\frac{1}{2}×3×|{y_0}|+\frac{1}{2}×3×|\frac{{-2{y_0}^2-3}}{{2{y_0}}}|$
=$\frac{3}{2}(|{y_0}|+|\frac{{-2{y_0}^2-3}}{{2{y_0}}}|)$=$\frac{3}{2}(2|{y_0}|+\frac{3}{{2|{y_0}|}})$$≥\frac{3}{2}×2\sqrt{2|{y_0}|×\frac{3}{{2|{y_0}|}}}$=$3\sqrt{3}$.
当且仅当$2|{y_0}|=\frac{3}{{2|{y_0}|}}$时,即${y_0}=±\frac{{\sqrt{3}}}{2}∈[-\sqrt{2},\sqrt{2}]$时等号成立.
故四边形OPAB面积的最小值为$3\sqrt{3}$.

点评 本题考查椭圆的方程和离心率的求法,注意运用椭圆的性质和离心率公式,考查四边形面积的最值的求法,注意运用直线的斜率公式和基本不等式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xoy,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=acost+\sqrt{3}}\\{y=asint}\end{array}}\right.$(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线${C_2}:{ρ^2}=2ρsinθ+6$.
(1)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(2)已知C1与C2的交于A,B两点,且AB过极点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在直角坐标系中,如果不同两点A(a,b),B(-a,-b)都在函数y=h(x)的图象上,那么称[A,B]为函数h(x)的一组“友好点”([A,B]与[B,A]看作一组).已知定义在[0,+∞)上的函数f(x)满足f(x+2)=$\sqrt{2}$f(x),且当x∈[0,2]时,f(x)=sin$\frac{π}{2}$x.则函数g(x)=$\left\{\begin{array}{l}{f(x),0<x≤8}\\{-\sqrt{-x},-8≤x<0}\end{array}\right.$的“友好点”的组数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是一个三棱柱的正视图和俯视图,其俯视图是面积为8$\sqrt{2}$的矩形,则该三棱柱的体积是(  )
A.8B.4$\sqrt{2}$C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设曲线C1的参数方程为$\left\{\begin{array}{l}x=t\\ y={t^2}\end{array}\right.$(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,曲线${C_2}:ρsin(θ-\frac{π}{3})=1$
(1)求曲线C1的极坐标方程;
(2)若曲线C1与曲线C2相交于A、B,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-2+t}\\{y=-2t}\end{array}\right.$(t为参数),圆C的普通方程为x2+y2-2y=0,以O为极点,x轴的正半轴为极轴,建立极坐标系.
(1)求直线l的极坐标方程;
(2)设M(ρ,θ)(ρ≥0,0≤θ<2π)为直线l上一动点,MA切圆C于点A,求|MA|的最小值,及此时点M的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从1,2,3,4,5中任意取出两个不同的数,则这两个数不相邻的概率为(  )
A.0.3B.0.4C.0.5D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知一个几何体的三视图如图所示(正视图是两个正方形,俯视图是两个正三角形),则其体积为(  )
A.$\frac{{3\sqrt{3}}}{2}$B.$\frac{{9\sqrt{3}}}{4}$C.$3\sqrt{3}$D.$\frac{{9\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知不等式ax2+2x+c>0的解是-$\frac{1}{3}$<x$<\frac{1}{2}$,求关于x的不等式-cx2+2x-a>0的解集.

查看答案和解析>>

同步练习册答案