精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=|x-4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax对任意的实数x恒成立,求a的取值范围.

分析 (1)f(x)<g(x)等价于(x-4)2<(2x+1)2,从而求得不等式f(x)<g(x)的解集.
(2)由题意2f(x)+g(x)>ax对任意的实数x恒成立,即H(x)的图象恒在直线G(x)=ax的上,即可求得a的范围.

解答 解:(1)f(x)<g(x)等价于(x-4)2<(2x+1)2,∴x2+4x-5>0,
∴x<-5或x>1,
∴不等式的解集为{x|x<-5或x>1};
(2)令H(x)=2f(x)+g(x)=$\left\{\begin{array}{l}{4x-7,x>4}\\{9,-\frac{1}{2}≤x≤4}\\{-4x+7,x<-\frac{1}{2}}\end{array}\right.$,G(x)=ax,
2f(x)+g(x)>ax对任意的实数x恒成立,即H(x)的图象恒在直线G(x)=ax的上方.
故直线G(x)=ax的斜率a满足-4≤a<$\frac{9}{4}$,即a的范围为[-4,$\frac{9}{4}$).

点评 本题主要考查绝对值的意义,带由绝对值的函数,函数的恒成立问题,体现了转化、数形结合的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在直角坐标系中,如果不同两点A(a,b),B(-a,-b)都在函数y=h(x)的图象上,那么称[A,B]为函数h(x)的一组“友好点”([A,B]与[B,A]看作一组).已知定义在[0,+∞)上的函数f(x)满足f(x+2)=$\sqrt{2}$f(x),且当x∈[0,2]时,f(x)=sin$\frac{π}{2}$x.则函数g(x)=$\left\{\begin{array}{l}{f(x),0<x≤8}\\{-\sqrt{-x},-8≤x<0}\end{array}\right.$的“友好点”的组数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从1,2,3,4,5中任意取出两个不同的数,则这两个数不相邻的概率为(  )
A.0.3B.0.4C.0.5D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知一个几何体的三视图如图所示(正视图是两个正方形,俯视图是两个正三角形),则其体积为(  )
A.$\frac{{3\sqrt{3}}}{2}$B.$\frac{{9\sqrt{3}}}{4}$C.$3\sqrt{3}$D.$\frac{{9\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,已知|AF|=3,|BF|=2,则p等于$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.${(\sqrt{x}+\frac{3}{x})}^{n}$的展开式中,各项系数之和为A,各项的二项式系数之和为B,若$\frac{A}{B}$=32,则n=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知A,B是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1和双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的公共顶点,其中a>b>0,P是双曲线上的动点,M是椭圆上的动点(P,M都异于A,B),且满足$\overrightarrow{PA}$+$\overrightarrow{PB}$=λ($\overrightarrow{MA}$+$\overrightarrow{MB}$)(λ∈R),设直线AP,BP,AM,BM的斜率分别为k1,k2,k3,k4,若k1+k2=$\sqrt{3}$,则k3+k4=-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知不等式ax2+2x+c>0的解是-$\frac{1}{3}$<x$<\frac{1}{2}$,求关于x的不等式-cx2+2x-a>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点(a,b)是圆x2+y2=r2外的一点,则直线ax+by=r2与圆的位置关系 (  )
A.相离B.相切C.相交且不过圆心D.相交且过圆心

查看答案和解析>>

同步练习册答案